
CHAPTER 7
CONSISTENCY AND REPLICATION

Replication in Distributed System

• In a distributed system data is stored is over different computers in a
network.

• Therefore, we need to make sure that data is readily available for the
users.

• Availability of the data is an important factor often accomplished by
data replication.

•Replication is the practice of keeping several copies of data in
different places.

Why do we require replication?

• The first and foremost thing is that it makes our system more stable
because of node replication.

It is good to have replicas of a node in a network due to following reasons:

• If a node stops working, the distributed network will still work fine due to
its replicas which will be there.

• Thus it increases the fault tolerance of the system.

• It also helps in load sharing where loads on a server are shared among
different replicas.

• It enhances the availability of the data. If the replicas are created and data
is stored near to the consumers, it would be easier and faster to fetch data.

• DISADVANTAGES OF DATA REPLICATION –
• More storage space is needed as storing the replicas of same data at different

sites consumes more space.
• Data Replication becomes expensive when the replicas at all different sites

need to be updated.
• Maintaining Data consistency at all different sites involves complex

measures.

Types of Replication

• Active Replication

• Passive Replication

Active Replication:

• The request of the client goes to all the replicas.

• It is to be made sure that every replica receives the client request in
the same order else the system will get inconsistent.

• There is no need for coordination because each copy processes the
same request in the same sequence.

• All replicas respond to the client’s request.

Passive Replication:

• The client request goes to the primary replica, also called the main
replica.

• There are more replicas that act as backup for the primary replica.
• Primary replica informs all other backup replicas about any

modification done.
• The response is returned to the client by a primary replica.
• Periodically primary replica sends some signal to backup replicas to

let them know that it is working perfectly fine.
• In case of failure of a primary replica, a backup replica becomes the

primary replica.

Active Replicas (or primary replicas) handle all writes and reads,
while Passive Replicas (or backup replicas) passively synchronize
with the primary, serving as backups and potentially for read-only
operations.

An important issue in distributed systems is the replication of data.

• Data are generally replicated to enhance reliability or improve
performance

• One of the major problems is keeping replicas consistent.

• Informally, this means that when one copy is updated we need to
ensure that the other copies are updated as well; otherwise the
replicas will no longer be the Same.

First of all, we start with concentrating on managing replicas:
-which takes into account not only the placement of replica servers,
but also how content is distributed to these servers.

The second issue is how replicas are kept consistent.

-In most cases, applications require a strong form of consistency.

-This means that updates are to be propagated more or less
immediately between replicas.

REASON FOR REPLICATION

• Two primary reasons for replication: reliability and performance.

Increasing reliability: – If a replica crashes, system can continue working
by switching to other replicas.

Improving performance: – Important for distributed systems over large
geographical areas.

Fault Tolerance: if the server fails data can be accessed from other
servers .

Challenges in Replication

There is a price to be paid when data are replicated:

• The problems with replication are: Having multiple copies may lead to
consistency problems.

• Whenever a copy is modified, that copy becomes different from the
rest.

• Consequently, modifications have to be carried out on all copies
to ensure consistency.

• Exactly when and how those modifications need to be carried
out determines the price of replication.

• Cost of increased bandwidth for maintaining replication

Real World Example of Replication

A real-world example of replicas in a distributed system can be found in the
context of large-scale web applications or databases.

One such example is the use of replica sets in distributed databases like
MongoDB or clusters in distributed file systems like Hadoop's HDFS.

Example: MongoDB Replica Sets

MongoDB, a popular NoSQL database, uses replica sets to provide high availability and
fault tolerance.

● Primary and Secondary Nodes: A MongoDB replica set typically consists of
multiple nodes:
○ Primary Node: Handles all write operations and is the main node that clients

interact with.
○ Secondary Nodes: Maintain copies of the data from the primary node and

serve read operations.

● Automatic Failover: If the primary node fails (due to hardware failure,
network issues, etc.), one of the secondary nodes is automatically
elected as the new primary. This ensures that the database remains
available even if one node goes down.

● Data Replication: MongoDB uses a mechanism called replication to
synchronize data between nodes. The primary node logs all write
operations (in the form of an oplog) and sends these operations to its
secondary nodes. This way, each secondary node maintains an
up-to-date copy of the data.

Benefits and Use Cases

● High Availability: Replica sets ensure that if one node fails, another node can take
over, minimizing downtime.

● Fault Tolerance: By maintaining multiple copies of the data across different nodes,
replica sets protect against data loss.

● Read Scalability: Secondary nodes can serve read operations, distributing the
read workload and improving overall system performance.

Placement of replicas

Three places to put replicas:

• Permanent replicas: permanent replicas consist of cluster of servers
that may be geographically dispersed.

• Server initiated replicas: server initiated caches include placing
replicas in the hosting server and server caches.

• Client initiated replicas: Client initiated replicas include web browser
cache.

1. Permanent Replica

● These replicas are always available and do not change dynamically.

● Typically found in databases or distributed storage systems where a fixed number of copies
are maintained.

● Used to ensure high availability and fault tolerance.

● Example: A database system that maintains three fixed copies of data across different servers for
redundancy.

2. Server-Initiated Replica

The server dynamically creates replicas based on demand, workload, or fault
tolerance requirements.

Often used in content delivery networks (CDNs) and cloud computing
environments.

Example: A cloud storage system like AWS S3 automatically creating new
replicas when a data center is overloaded or fails.

Client-Initiated Replica

● The client requests the creation of a replica, usually to improve access speed or offline
availability.

● Typically used in mobile applications, edge computing, and peer-to-peer networks.

● Example: A user downloading a movie for offline viewing in a video streaming service, effectively
creating a temporary replica.

Propagation of updates among replicas

• Push based propagation: a replica in which updates occurs pushes the
updates to all other replicas.

• Pull based propagation: a replicas requests another replica to send
the newest data it has.

Lack of consistency

• If a copy is modified , the copy becomes inconsistent from the rest of
copies .

• It takes some time for all the copies to be consistent.

Replication as a scaling technique

• Scalability issues generally appear in the form of performance
problems.

• Placing copies of data close to the processes can improve
performance through reduction of access time and thus solve
scalability problems.

• A possible trade-off that needs to be made is that keeping copies up
to date may require more network bandwidth.

Consistency Model in Distributed System

In distributed systems, consistency models establish criteria for data
synchronization and specify how users and applications should
interpret data changes across several nodes.

In a distributed system, it specifically controls how data is accessed
and changed across numerous nodes and how clients are informed
of these updates.

These models range from strict to relaxed approaches.

•A collection of copies is consistent when the copies are always the
same.

• This means that a read operation performed at any copy will always
return the same result.

• Consequently, when an update operation is performed on one copy,
the update should be propagated to all copies before a subsequent
operation takes place.

• This type of consistency is sometimes informally referred to as tight
consistency or synchronous replication.

• The key idea is that an update is performed at all copies as a single
atomic operation, or transaction.

• we need to synchronize all replicas.

Data Consistency

• Data consistency is the process of keeping information uniform as it
moves across a network and between various applications on a
computer.

Consistency Model

Consistency models define the rules and guarantees regarding
the order and visibility of updates in distributed systems.

They ensure that clients or users perceive a coherent state of
the system despite its distributed nature.

Data centric consistency model

• Traditionally, consistency has been discussed in the context of read
and write operations on shared data, available by means of
(distributed) shared memory.

• A data store may be physically distributed across multiple machines.

• Each process that can access data from the store is assumed to have a
local (or nearby) copy available of the entire store.

• Write operations are propagated to the other copies.

• A data operation is classified as a write operation when it changes the
data, and is otherwise classified as a read operation.

1. Strict(Strong) Consistency Model

In a strongly consistent system, all nodes in the system agree on the order in
which operations occurred.

Reads will always return the most recent version of the data.

When an update occurs on one server, this model makes sure every other server
in the system reflects this change immediately.

This model provides the highest level of consistency, but it can be slower and
require more resources in a distributed environment since all servers must stay
perfectly in sync.

Example :

When operations rely on the most recent data and consistency is crucial,

like in banking systems or inventory management, it is important.

ii.Sequential Consistency

• It is a consistency model in distributed systems that ensures all
operations across processes appear in a single, unified order.

• In this model, every read and write operation from any process appears to
happen in sequence, regardless of where it occurs in the system.

• Importantly, all processes observe this same sequence of operations,
maintaining a sense of consistency and order across the system.

Opt for sequential consistency when the order of operations matters but a perfect global

order isn’t necessary.

Real-World Example: Distributed Database

● Imagine a distributed database with multiple replicas (copies) of the data.
● If client A writes a value to the database, and then client B reads the value,

sequential consistency ensures that client B will see the write from client A
in the same order as it happened.

○

sequential consistency

Let us consider them data nodes acting on some clients’ requests.

This interleaving is sequentially consistent and both P3 and P4 see the
same ordering of events.

W(x)a means that a process is writing the value a to a variable x.

R(x)a means that a process did a read operation on x and got a value a
back.

non sequential consistency

let us see an example that is not sequentially consistent using the following
illustration.

Note that process P3 reads as x=b and then x=a as a final value. Process P4
reads x as a and then b as the final value.

That means if no more updates are coming, P3 and P4 have divergent values of
x.

As explained earlier, each process should have seen the same total ordering to
be sequentially consistent.

iii. Causal Consistency

The Causal Consistency Model is a type of consistency in distributed systems
that ensures that related events happen in a logical order.

In simpler terms, if two operations are causally related (like one action
causing another), the system will make sure they are seen in that order by all
users.

However, if there’s no clear relationship between two operations, the system
doesn’t enforce an order, meaning different users might see the operations in
different sequences.

• It is a weaker model than sequential consistency.

• (one process follow other)

• causal consistency means , if the first operation is influenced by the
second operation.

• If a write(w2) operation is causally related to another write (w1) the
acceptable order is (w1, w2).

Client-Centric Consistency Models

Client-centric Consistency Model defines:

• how a data-store presents the data value to an individual client
when the client process accesses the data value across different
replicas.

i.

Eventual Consistency

• In Systems that tolerate high degree of inconsistency, if no updates
take place for a long time all replicas will gradually and eventually
become consistent.

• This form of consistency is called eventual consistency.

• Eventual consistent data stores work fine as long as clients always
access the same replica.

• Write conflicts are often relatively easy to solve when assuming that
only a small group of processes can perform updates.

• Eventual consistency is therefore often cheap to implement.

ii. Monotonic Reads and Writes

Once a piece of data has been read or written, monotonic reads and writes guarantee that the
data will always be viewed in a predictable and consistent order in subsequent reads or
writes.

● Monotonic Reads: If you read a value from a system, the next time you read it, you will

either get the same value or a more recent one. You won’t get an older value after

seeing a newer one.

● Monotonic Writes: This ensures that once a write happens, all future writes will follow

in the correct order. If you update a record or send a message, the system guarantees

that it won’t reverse the order of your updates.

iii. Read Your Writes

• states that the system guarantees that, once an item has been
updated, any attempt to read the record by the same client will
return the updated value.

• A write operation is always completed before a successive read
operation by the same process no matter where that read operation
takes place.

• Example: Updating a Web page and guaranteeing that the Web
browser shows the newest version instead of its cached copy.

iv. Writes Follow Reads

• A data store is said to provide writes-follow-reads consistency:

– if a process has write operation on a data item x following a
previous read operation on x

–then it is guaranteed to take place on the same or a more recent
value of x that was read.

•

• Example: Suppose a user first reads an article A then posts a response
B. By requiring writes-follow-reads consistency, B will be written to
any copy only after A has been written.

Replica Management

• A key issue for any distributed system that supports replication is to
decide where , when and by whom replicas should be placed and
subsequently which mechanism to use for keeping the replicas
consistent.

• The placement problem itself should be split into two subproblems:
-that of placing replicas servers and -

-that of placing content.

Where to place
replica ?

• When it comes to content
and placement , three
different types of replicas can
be distinguished logically
organized as shown :

1. Permanent Replicas: Process/Machine always have a replica. In
many cases , the number of permanent replicas is small.
Eg: a website.
2. Server-Initiated Replicas: Process that can dynamically host a
replica on request of another server in the data store. Eg: a web
server placed in kathmandu .

• Normally this server can handle incoming request quite easily, but it
may happen that over a couple of days a sudden burst of request
come in from an unexpected location for from the server.

• In that case , it may be worthwhile to install a number of temporary
replicas in regions where request are coming from.

• Client Initiated Replicas: Process that can dynamically host a replica
on request of a client .

• In essence a cache is a local storage facility that is used by client to
temporarily store a copy of the data it has just requested, In principle
, managing the cache is left entirely to the client.

When Should Replicas Be Created or Updated?

At Deployment (Initial Replica Creation):

On Demand (Dynamic Replication):

Real-time Updates (Replication of Writes):

On Failure or Recovery:

By Whom Should Replicas Be Placed?

System Administrators (Manual Placement):

Distributed System Algorithms (Automated Placement):

Distributed Consensus Protocols (e.g., Paxos, Raft):

Cloud Providers and Managed Services:

Content Distribution

• Replica management also deals with propagation of (updated) content to
the relevant replica server.

• content is duplicated and stored on multiple servers (replicas) :
• to improve availability,
• reduce load on the primary server, and
• enhance performance by allowing content to be served from the

closest replica to the user.

Any important design issue concerns what is actually to be
propagated . Basically there are three possibilities:

1. Propagate only a notification of an update (often used for caches)

2. Transfer data from one copy to another(Distributed Database)

3. Propagate the update operation to other copies(Also called active
replication)

Pull Vs Push Protocols
• Another design issue relates to whether or not the updates are

pushed or pulled?

• Push-based/Server-based Approach: sent “automatically” by server,
the client does not request the update.

• This approach is useful when a high degree of consistency is needed.
Often used between permanent and server-initiated replicas.

• Pull-based/Client-based Approach: used by client caches (e.g.,
browsers), updates are requested by the client from the server. No
request, no update!

Consistency protocols

• A consistency protocol describes an implementation of a specific
consistency model.

• Consistency protocols can be divided into two types according to
whether data disagreement is allowed or not:

Single master protocol (data disagreement is not allowed)

The whole distributed system is like a monolithic system.

All write operations are handled by the master node and
synchronized to other replicas.

Multi-master protocol (allowing data divergence)

All write operations can be initiated by different nodes and
synchronized to other replicas.

• Main approaches are as follows:

• 1. Primary- based protocol

• 2. Replicated- write protocol

• 3. Cache-coherence protocol

1. Primary based protocols

• This protocol is typically used in distributed systems, where a "primary" or
"leader" node handles all write requests, and the other nodes (often called
"replicas" or "followers") only serve read requests.

• In the case of a write request, the primary node updates the data, and the
changes are propagated to the secondary nodes to ensure consistency
across the system.

• This is common in distributed databases, such as in master-slave
replication setups.

Characteristics:

● The primary node is the point of control for write operations.

● Replicas receive updates asynchronously or synchronously
depending on the configuration.

● Offers simplicity and scalability for read-heavy systems but can
become a bottleneck if writes are frequent.

2. Replicated –write protocols

• This protocol is commonly used in systems with multiple replicas,
where all replicas must agree on the order of writes to maintain
consistency.

• In systems that use this protocol, the data is written to multiple
replicas simultaneously or in a specific order to ensure the write is
reflected consistently across all nodes.

Common examples include Quorum-based systems or Paxos-based
protocols:

● Write operations are replicated across multiple nodes.

● The system ensures that multiple nodes have the same data after a write,
often requiring some form of consensus.

● These protocols provide fault tolerance and high availability because the
system can continue operating as long as a majority of replicas are
available.

3. Cache-coherence protocols

• In a multi-core or multi-processor system, a
cache-coherence protocol ensures that when multiple
processors (each with its own local cache) read or write to the
same memory location, all caches are kept in sync with each
other.

•The goal is to avoid situations where processors operate on
stale or inconsistent data, leading to errors or unexpected
behavior.

Popular cache-coherence protocols include:

● MESI (Modified, Exclusive, Shared, Invalid): One of the most well-known
cache-coherence protocols that defines states for cache lines to ensure
consistency across different processors' caches.

● MOESI (Modified, Owner, Exclusive, Shared, Invalid): An extension of MESI that
adds an "Owner" state for better efficiency in systems with high write contention.

Characteristics:

● Ensures that all caches have a consistent view of the memory.

● Reduces the chance of race conditions and errors in multi-core
systems.

● Can have an impact on performance, especially when there are
frequent memory writes across processors.

Web Cache

• A cache is a temporary storage location for copied information . There
are over a billion pages(or objects) on the internet.

• Many users request the same popular objects .

• An example of that would be the top logo image of Yahoo.com which
appears in almost all Yahoo pages .

• The image must be delivered to the browser each time the browser
accesses any of Yahoo's pages an these pages are requested a number
of times each day by different users .

• A Web cache is a dedicated computer system which will monitor the object
requests and stores objects as it retrieves them from the server .

• On subsequent requests the cache will deliver objects from its storage
rather than passing the request to the origin server .

• Every Web object changes over time and therefore has a useful life
or "freshness" .

• If the freshness of an object expires it is the responsibility of the Web cache
to get the new version of the object .

• The more the number of requests for the same object the more effective
will the Web cache be in reducing upstream traffic and will also help
reducing server load, resulting in less latency.

