
Chapter 4:
 Communication

Overview
⚫ 4.1 Foundations
⚫ 4.2 Remote Procedure Call
⚫ 4.3 Message-Oriented Communication
⚫ 4.4 Multicast Communication
⚫ 4.5 Case Study: Java RMI and Message
⚫ Passing Interface (MN)

Introduction
⚫ In a distributed system, processes run on

different machines.

⚫ Processes can only exchange information
through message passing.

Introduction
⚫ A communication network provides data exchange between

two (or more) end points.
⚫ Early examples: telegraph or telephone system.

⚫ In a computer network, the end points of the data exchange
are computers and/or terminals. (nodes, sites, hosts, etc., …)

⚫ Networks can use switched, broadcast, or multicast
technology

⚫ In a uniprocessor system, interprocess
communication assumes the existence
of shared memory.

⚫ A typical example is the
producer-consumer problem.

⚫ In a distributed system, there’s no shared memory.

⚫ All communication in distributed system is based
on message passing.

⚫ Three widely-used model for communication:

⚫ RPC

⚫ Message –Oriented Middleware

⚫ Data streaming

Fundamentals of Communication

Network Communication
Technologies

1. Switched Networks
⚫ Switched communication networks are

those in which data transferred from
source to destination is routed between
various intermediate nodes.

⚫ Switching is the technique by which nodes
control or switch data to transmit it
between specific points on a network.
There are 3 common switching
techniques:

⚫ Circuit Switching
⚫ Packet Switching
⚫ Message Switching

⚫ Circuit Switching
⚫ When two nodes communicate with each

other over a dedicated communication
path, it is called circuit switching.

⚫ There 'is a need of pre-specified route
from which data will travels and no other
data is permitted.

⚫ In circuit switching, to transfer the data,
circuit must be established so that the data
transfer can take place.

⚫ Circuits can be permanent or temporary.
Applications which use circuit switching
may have to go through three phases:

⚫ Establish a circuit
⚫ Transfer the data
⚫ Disconnect the circuit

Message Switching
⚫ This technique was somewhere in middle

of circuit switching and packet switching.
⚫ In message switching, the whole message is

treated as a data unit and is switching /
transferred in its entirety.

⚫ A switch working on message switching,
first receives the whole message and
buffers it until there are resources available
to transfer it to the next hop.

⚫ If the next hop is not having enough
resource to accommodate large size
message, the message is stored and switch
waits.

⚫ Shortcomings of message switching gave
birth to an idea of packet switching.

⚫ The entire message is broken down into
smaller chunks called packets.

⚫ The switching information is added in the
header of each packet and transmitted
independently.

⚫ It is easier for intermediate networking
devices to store small size packets and they
do not take much resources either on
carrier path or in the internal memory of
switches.

Types of Communications

LAN ,WAN, MAN

Protocols
⚫ A protocol is a set of rules that defines how

two entities interact.

⚫ For example: HTTP, FTP, TCP/IP,

Open Systems Interconnection Reference
Model (OSI)
○ OSI stands for Open System Interconnection is a reference

model that describes how information from a software

application in one computer moves through a physical medium

to the software application in another computer.

https://www.javatpoint.com/software
https://www.javatpoint.com/what-is-computer

⚫ OSI consists of seven layers, and each layer performs a
particular network function.

⚫ OSI model was developed by the International Organization
for Standardization (ISO) in 1984, and it is now considered as
an architectural model for the inter-computer
communications.

⚫ OSI model divides the whole task into seven smaller and
manageable tasks. Each layer is assigned a particular task.

Lower-level Protocols

⚫ Physical: standardizes electrical,
mechanical, and signaling interfaces; e.g.,
⚫ # of volts that signal 0 and 1 bits
⚫ # of bits/sec transmitted
⚫ Plug size and shape, # of pins, etc.

⚫ Data Link: provides low-level error
checking
⚫ Appends start/stop bits to a frame
⚫ Computes and checks checksums

⚫ Network: routing (generally based on IP)
⚫ IP packets need no setup
⚫ Each packet in a message is routed independently

Transport Protocols
⚫ Transport layer: Receives message

from higher layers, divides into packets,
assigns sequence #

⚫ Reliable transport
(connection-oriented) can be built on
top of connection-oriented or
connectionless networks
⚫ When a connectionless network is used the

transport layer re-assembles messages in
order at the receiving end.

⚫ Most common transport protocols:
TCP/IP

TCP/IP Protocols
⚫ Developed originally for Army research

network ARPANET.
⚫ Major protocol suite for the Internet
⚫ Can identify 4 layers, although the design

was not developed in a layered manner:
⚫ Application (FTP, HTTP, etc.)
⚫ Transport: TCP & UDP
⚫ IP: routing across multiple networks (IP)

Reliable/Unreliable Communication
⚫ TCP guarantees reliable message

transmission even if packets are lost or
delayed.

⚫ Packets must be acknowledged by the
receiver– if ACK not received in a
certain time period, resend.

⚫ Reliable communication is considered
connection-oriented because it “looks like”
communication in circuit switched
networks.

Reliable/Unreliable Communication
⚫ For applications that value speed over

absolute correctness, TCP/IP provides a
connectionless protocol: UDP
⚫ UDP = User Datagram Protocol

⚫ Session layer: rarely supported
⚫ Provides dialog control;
⚫ Keeps track of who is transmitting

⚫ Presentation: also not generally used
⚫ Cares about the meaning of the data
⚫ Record format, encoding schemes, mediates between

different internal representations
⚫ Application: Originally meant to be a set of

basic services; now holds applications and
protocols that don’t fit elsewhere

Middleware
⚫ Middleware is software that lies between an operating

system and the applications running on it.

⚫ Essentially functioning as hidden translation layer,
middleware enables communication and data
management for distributed applications.

⚫ It’s sometimes called plumbing, as it connects two applications
together so data and databases can be easily passed between the
“pipe.”

⚫ Using middleware allows users to perform such requests as
submitting forms on a web browser, or allowing the web server to
return dynamic web pages based on a user’s profile.

Apart from communication function , other function
include :

security authentication,
transaction management,
message queues,
applications servers, web servers, and directories.

Middleware Protocols

Figure 4-3. An adapted reference model
for networked communication.

Middleware Communication
Techniques
⚫ Remote Procedure Call
⚫ Message-Oriented Communication
⚫ Stream-Oriented Communication
⚫ Multicast Communication

1. Remote Procedure Call
⚫ A remote procedure call is an interprocess

communication technique that is used for
client-server based applications.

⚫ It is also known as a subroutine call or a
function call.

⚫ A client has a request message that the RPC
translates and sends to the server.

● This request may be a procedure or a function

call to a remote server.

● When the server receives the request, it sends

the required response back to the client.

● The client is blocked while the server is

processing the call and only resumed
execution after the server is finished.

NOTE:
A stub in distributed computing is a piece
of code that converts parameters passed
between client and server during a remote
procedure call.

The sequence of events in a remote
procedure call are given as follows −

⚫ The client stub is called by the client.

⚫ The client stub makes a system call to send
the message to the server and puts the
parameters in the message.

● The message is sent from the client to the server by the

client’s operating system.

● The message is passed to the server stub by the server

operating system.

● The parameters are removed from the message by the

server stub.

● Then, the server procedure is called by the server stub.

RPC Mechanism

Passing Value Parameters

Figure 4-7. The steps involved in a doing a remote computation
through RPC.

Advantages of Remote Procedure Call

⚫ RPC support process oriented and thread oriented
models.

⚫ The internal message passing mechanism of RPC is
hidden from the user.

⚫ The effort to re-write and re-develop the code is
minimum in remote procedure calls.

⚫ RPC can be used in distributed environment as well as
the local environment.

⚫ Many of the protocol layers are omitted by RPC to
improve performance.

Disadvantages of Remote Procedure Call

⚫ The remote procedure call is a concept
that can be implemented in different ways.
It is not a standard.

⚫ There is no flexibility in RPC.
⚫ There is an increase in costs because of

remote procedure call.

Protocols to Support Services
⚫ Authentication protocols, to prove identity
⚫ Authorization protocols, to grant resource

access to authorized users
⚫ Distributed commit protocols, used to allow a

group of processes to decided to commit or
abort a transaction (ensure atomicity)

⚫ Locking protocols to ensure mutual exclusion
on a shared resource in a distributed
environment.

Middleware Protocols to Support
Communication

⚫ Protocols for remote procedure call (RPC)
or remote method invocation (RMI)

⚫ Protocols to support message-oriented
services

⚫ Protocols to support streaming real-time
data, as for multimedia applications

⚫ Protocols to support reliable multicast
service across a wide-area network

These protocols are built on top of
low-level message passing, as supported
by the transport layer.

2. The Message Passing Model
⚫ This is the fundamental process that underlies other

techniques for network communication.

⚫ SEND and RECEIVE are the basic primitives

⚫ SEND(destination, msg), where destination designates the
receiver of the message, and msg is a pointer to the
actual message.

⚫ RECEIVE(source, msg), where source is the sender and
msg is a pointer to the location where the incoming
message should be stored.

Buffered Message Passing
In this implementation a message is copied
three times.
⚫ from the sender's message buffer to a buffer

in the communication software (middleware
or OS kernel)

⚫ from the middleware/kernel buffer on the
sender's machine to the middleware/kernel
buffer on the receiving machine

⚫ from the middleware/kernel buffer to the
receiver's buffer.

Types of Communication
⚫ Persistent versus transient
⚫ Synchronous versus asynchronous
⚫ Discrete versus streaming

Persistent versus Transient
Communication

Transient communication: Comm. server discards
message when it cannot be delivered at the next
server, or at the receiver.

Persistent communication: A message is stored at a
communication server as long as it takes to deliver it.

Communication between caller & callee can be
hidden by using procedure-call mechanism.

Synchronous versus Asynchronous
Communication

⚫ Synchronous communication happens when messages can only
be exchanged in real time.

⚫ It requires that the transmitter and receiver are present in the
same time and/or space.

⚫ Examples of synchronous communication are phone calls or
video meetings.

⚫ Asynchronous communication happens when information
can be exchanged independent of time.

⚫ It doesn’t require the recipient’s immediate attention, allowing
them to respond to the message at their convenience.

⚫ Examples of asynchronous communication are emails, online
forums, and collaborative documents.

Remote Method Invocation
(RMI)
⚫ Similar to RPC; allows a Java process

running on one virtual machine to call a
method of an object running on another
virtual machine

⚫ Supports creation of distributed Java
systems

http://72.5.124.55/j2se/1.3/docs/guide/rmi/
http://72.5.124.55/j2se/1.3/docs/guide/rmi/

ASSIGNMENT: RMI

Sockets
⚫ A communication endpoint used by

applications to write and read to/from the
network.

⚫ Sockets provide a basic set of primitive
operations

⚫ Sockets are an abstraction of the actual
communication endpoint used by local OS

Primitive Meaning
Socket Create new communication end point
Bind Attach a local address to a socket
Listen* Willing to accept connections

(non-blocking)
Accept Block caller until connection request

arrives
Connect Actively attempt to establish a connection
Send Send some data over the connection

Receive Receive some data over the connection

Close Release the connection

How a Server Uses Sockets
Internetworking with TCP/IP, Douglas E. Comer & David L. Stevens, Prentice Hall, 1996

System Calls
• Socket
• Bind

• Listen

• Accept
• Read
• Write
• Close

Meaning
• Create socket descriptor
• Bind local IP address/

port # to the socket
• Place in passive mode,

set up request queue
• Get the next message
• Read data from the

network
• Write data to the network
• Terminate connection

Repeat accept/close &
read/write cycles

How a Client Uses Sockets
Internetworking with TCP/IP, Douglas E. Comer & David L. Stevens, Prentice Hall, 1996

System Calls
• Socket

• Connect

• Write

• Read

• Close

Meaning
• Create socket descriptor

• Connect to a remote
server

• Write data to the network

• Read data from the
network

• Terminate connection

Repeat read/write
cycle as needed

Socket Communication
⚫ Using sockets, clients and servers can set up

a connection-oriented communication
session.

⚫ Servers execute first four primitives
(socket, bind, listen, accept) while clients
execute socket and connect primitives)

⚫ Then the processing is client/write,
server/read, server/write, client/read, all
close connection.

Message-Passing Interface
(MPI)

 Message Passing Interface (MPI) is a standardized and portable
message-passing system designed for parallel computing.

It enables communication between multiple processes running on the
same or different machines in a distributed memory environment.

Features of MPI:

1. Process Communication – Allows processes to exchange
data using messages.

2. Scalability – Works efficiently on small and large clusters.
3. Portability – Runs on various platforms without

modification.
4. Performance – Optimized for high-speed interconnects in

HPC (High-Performance Computing).
5. Fault Tolerance – Some implementations support fault

recovery mechanisms.

Common MPI Functions

1. Initialization and Finalization

● MPI_Init(&argc, &argv); → Initializes MPI
environment.

● MPI_Finalize(); → Cleans up the MPI environment.

2. Communication Between Processes

● Point-to-Point Communication
○ MPI_Send() → Sends a message.
○ MPI_Recv() → Receives a message.

2. Message-Oriented Communication

⚫ Message-Oriented Communication is a
communication paradigm where processes or
applications exchange data through messages
rather than direct function calls or shared
memory.

⚫
⚫ This approach is widely used in distributed

systems, messaging middleware, and
networked applicat

1. Asynchronous Communication
○ Senders and receivers do not need to interact simultaneously.
○ Messages are stored in queues until the receiver is ready.

2. Decoupling
○ Sender and receiver operate independently, improving scalability.
○ Useful in microservices, cloud computing, and distributed

applications.
3. Reliability & Persistence

○ Messages can be stored (persisted) to ensure delivery, even if the
recipient is temporarily unavailable.

4. Message Brokers & Queues
○ Middleware like RabbitMQ, Apache Kafka, ActiveMQ, and

ZeroMQ manage message delivery.

Types of Message-Oriented Communication

1. Point-to-Point (P2P) Messaging
○ One sender, one receiver.
○ Example: Message Queues (e.g., RabbitMQ, IBM MQ).

2. Publish-Subscribe (Pub/Sub) Model
○ A sender (publisher) sends messages to multiple receivers

(subscribers).
○ Example: Kafka Topics, Redis Pub/Sub.

3. Request-Reply Messaging
○ A sender sends a request and waits for a response.
○ Example: Remote Procedure Call (RPC) over a message

bus.
4. Multicast Messaging

○ A message is sent to multiple recipients but only to interested
ones.

○ Example: UDP Multicast, MQTT.

Advantages of Message-Oriented Communication

✅ Scalability – Decoupled architecture supports distributed
systems.
✅ Fault Tolerance – Messages persist even if a service fails.
✅ Asynchronous Processing – Reduces blocking and increases
efficiency.
✅ Load Balancing – Messages can be distributed across multiple
consumers.

3. Stream-Oriented Communication
⚫ Stream-oriented communication is a form of communication in

which timing plays an important role.

⚫ Stream-oriented communication is also referred to as continuous
streams of data.

⚫ In stream-oriented communication the message content
must be delivered at a certain rate, as well as correctly.

⚫ e.g., music or video

Features

1. Supports for continuous media
2. Streams in distributed systems
3. Stream management

Characteristics

1. Streams are unidirectional.
2. Generally a single source, one or more sinks.
3. Often either sink/source is wrapped around hardware

(e.g., Camera, CD device, Tv monitor).
4. Simplex Stream: Single way to flow data.
5. Complex stream: Multiple ways to flow data. Example:

Video with subtitles.

Transmission mode

1. Synchronous
2. Asynchronous
3. Isochronous

1. Asynchronous: This is transmission at any time,
with arbitrary delay between transmission of any two
successive data items.

2. Synchronous: This is continuous transmission with
no gaps between transmission of successive data
items.

3. Isochronous: This is transmission at regular
intervals with a fixed gap between the transmission
of successive data items.

4.

ASSIGNMENT 2

EXPLAIN asynchronous synchronous and
isochronous transmission IN detail.

4. Multicast Communication
⚫ Multicast: sending data to multiple receivers.

⚫ Network- and transport-layer protocols for multicast bogged
down at the issue of setting up the communication paths to all
receivers.

⚫ Peer-to-peer communication using structured overlays can use
application-layer protocols to support multicast

Application-Level Multicasting

⚫ The overlay network is used to disseminate
information to members

⚫ Two possible structures:

⚫ Tree: unique path between every pair of nodes

⚫ Mesh: multiple neighbors ensure multiple paths
(more robust)

