
Distributed Systems
Processes
Chapter 3

1

Content

3.1 Threads
3.2 Virtualization
3.3 Clients
3.4 Servers
3.5 Code Migration

Process
⚫ A Program does nothing unless its instructions are

executed by a CPU.

⚫ A program in execution is called a process.

⚫ In order to accomplish its task, process needs the
computer resources.

⚫ There may exist more than one process in the system
which may require the same resource at the same time.

⚫ Some resources may need to be executed by one
process at one time to maintain the consistency
otherwise the system can become inconsistent and
deadlock may occur.

Child Process
⚫ A process can initiate a sub-process , which is called

child process.

⚫ A child process is replica of parent process and share
resources of parent process , but cannot exist if parent
is terminated.

Layout of process inside main memory

⚫ Stack: This section contains local variable, function and
returns address.

⚫ Heap: This Section is used to provide dynamic memory
whenever memory is required by the program during
runtime It is provided form heap section.

⚫ Text: This section contains the executable instruction,
constants

⚫ Data: This Section contains the global variables and static
local variables.

Process Life Cycle

⚫ The life-cycle of a process can be described by a state diagram
which has states representing the execution status of the process
at various times .

⚫ A process is created .

⚫ Whenever a process is created, it directly enters in the ready
state, in which, it waits for the CPU to be assigned.

⚫ One of the processes from the ready state will be chosen by the
OS depending upon the scheduling algorithm.

⚫ From the Running state, a process can make the transition to the
block or wait state depending upon the scheduling algorithm or
the intrinsic behavior of the process.

⚫ A process terminates or ends.

Threads
⚫ A thread is the smallest unit of processing that can be

performed in an OS.

⚫ Think of MS Word application, which is a process that
runs on computer. But an application can do more
than one thing at a time, which means that a given
process in an operating system can have one or
more threads.

⚫

Advantages of Thread over Process
⚫

1. Responsiveness: If the process is divided into
multiple threads, if one thread completes its
execution, then its output can be immediately
returned.

⚫ 2. Faster context switch: Context switch time between
threads is lower compared to process context switch.
Process context switching requires more overhead
from the CPU.

⚫ 3. Resource sharing: Resources like code, data, and files
can be shared among all threads within a process.

⚫ 5. Communication: Communication between multiple
threads is easier, as the threads shares common
address space.

Processes Threads
When switching a process,
operating system's resources
are required

No OS resources are required
for thread-switching

If a process is blocked, other
processes waiting in the queue
are also blocked

If a thread is blocked, another
thread in the same process can
still execute

Each process uses same code
and has its own memory

All threads can share files and
share child processes

An application having
multiple processes will use
more system resources

Processes using multiple
threads use less system
resources

Each process works on its own Threads can access data of
other threads

Multithreading
⚫ Multi-threading is the ability of a process to execute

multiple threads at the same time.
⚫ Again, the MS Word example is appropriate in

multi-threading scenarios.
⚫ The process can check spelling, auto-save, and read

files from the hard-drive, all while you are working on
a document.

⚫ Consider the following diagram. The threads share the
same code, files, and data.

⚫ This means that two ore more threads can run at the
same time (auto-save, grammar check, spell-check,
word-count, etc.).

Benefits of Multithreading
⚫ Resource Sharing :All the threads of a process share

its resources such as memory, data, files etc.

⚫ Responsiveness :Program responsiveness allows a
program to run quickly. For example - A web browser
with multithreading can use one thread for user
contact and another for image loading at the same
time.

⚫ Utilization of Multiprocessor Architecture : In a
multiprocessor architecture, each thread can run on a
different processor in parallel using multithreading.

⚫ Economy : It is more economical to use threads as
they share the process resources.

Types of Thread

⚫ The two main types of threads are user-level threads
and kernel-level threads.

⚫ A diagram that demonstrates these is as follows −

⚫ Note : The kernel is the essential center of a
computer operating system (OS). It is the core that
provides basic services for all other parts of the OS.

User Level Thread

⚫ The user-level threads are implemented by users and
the kernel is not aware of the existence of these
threads.

⚫ It handles them as if they were single-threaded
processes.

⚫ User-level threads are small and much faster than
kernel level threads.

⚫ They are represented by a program counter(PC), stack,
registers and a small process control block.

⚫ Also, there is no kernel involvement in
synchronization for user-level threads.

⚫ examples: Java thread.

⚫ User-level threads are easier and faster to create than
kernel-level threads. They can also be more easily
managed.

⚫ User-level threads can be run on any operating system.
⚫ There are no kernel mode privileges required for

thread switching in user-level threads.

Kernel Level Thread
 Kernel-level threads are handled by the operating

system directly and the thread management is done by
the kernel.

The context information for the process as well as the
process threads is all managed by the kernel.

Because of this, kernel-level threads are slower than
user-level threads. Example: Window .

⚫

Problems with Processes

⚫ Creating and managing processes is generally
regarded as an expensive task .

⚫ Making sure all the processes peacefully co-exist on
the system is not easy .

Thread Model
⚫ All modern OS support Kernel Level Thread, allowing

kernel to perform multiple simultaneous task.
⚫ Hence , user thread must be mapped to kernel thread.

⚫ Three models:
⚫ Many to One
⚫ One to One
⚫ Many to Many

Many to One
⚫ Maps many user level thread to one kernel level thread
One to One
⚫ Maps one user level thread to one kernel level thread
Many to Many
⚫ Maps many user level thread to many kernel level

thread

Students Work
⚫ Example of each type of model

Why Mapping from User to
kernel?
⚫ All the user threads that are created by a process are

executed over the same kernel level thread appointed
to the whole process.

⚫ Whenever it’s the turn for the specified process to
execute on the CPU it’s kernel thread is scheduled
onto the CPU and hence the process is executed.

⚫ The user threads, since all of them are controlled by
the creating process itself, they are to be mapped onto
the appointed kernel thread one by one and therefore
executed.

⚫ We can think of this whole process as creating a great
new product, maybe an electronic gadget or
something. If that product is to be sold it has to be
sold under a brand name and that brand or company
needs to be registered to the government and further
that company has to follow the rules and regulations
imposed by the government to sell the desired
products via shops in the market.

⚫ Here I am referring to user threads as the product,
kernel as government, process as company and shops
as kernel threads.

Important Implications

⚫ Two Important Implications:
1. Threaded applications often run faster than

non-threaded applications .
2. Threaded applications are harder to develop .

Virtualization
⚫ It is the process of creating a virtual version of

something like computer hardware, storage or
network.

⚫ It was initially developed during the mainframe era.

⚫ It involves using specialized software to create a virtual
or software-created version of a computing resource
rather than the actual version of the same resource.

⚫ With the help of Virtualization, multiple operating
systems and applications can run on same machine
and its same hardware at the same time, increasing the
utilization and flexibility of hardware.

⚫ In other words, one of the main cost effective,
hardware reducing, and energy saving techniques used
by cloud providers is virtualization.

⚫ Virtualization allows to share a single physical instance
of a resource or an application among multiple
customers and organizations at one time.

⚫ The machine on which the virtual machine is going to
be built is known as Host Machine and that virtual
machine is referred as a Guest Machine.

BENEFITS OF VIRTUALIZATION

1. More flexible and efficient allocation of resources.
2. Enhance development productivity.
3. It lowers the cost of IT infrastructure.
4. Remote access and rapid scalability.
5. High availability and disaster recovery.
6. Pay per use of the IT infrastructure on demand.
7. Enables running multiple operating systems.

Disadvantage of Virtualization
⚫ It can have a high cost of implementation.
⚫ It creates a security risk.
⚫ It creates an availability issue.
⚫ It creates a scalability issue.
⚫ It takes time.

TYPES OF VIRTUALIZATION

⚫ 1.Application Virtualization.
⚫ 2.Network Virtualization.
⚫ 3.Desktop Virtualization.
⚫ 4.Storage Virtualization.
⚫ 5.Server Virtualization. 6.Data virtualization.

1. Application Virtualization:

⚫ Application virtualization helps a user to have remote access of
an application from a server.

⚫ Application virtualization software allows users to access and

use an application from a separate computer than the one on

which the application is installed.

⚫ Example of this would be a user who needs to run two different
versions of the same software.

⚫ 2. Network Virtualization:

⚫ Network virtualization is the transformation of a network that
was once hardware-dependent into a network that is
software-based.

⚫ Network virtualization provides a facility to create and
provision virtual networks—logical switches, routers, firewalls,
load balancer.

One example of network virtualization is
virtual LAN (VLAN). A VLAN is a subsection
of a local area network (LAN) created with
software that combines network devices into
one group, regardless of physical location.

⚫ 3. Desktop Virtualization:
⚫ Desktop virtualization is simply the concept of replacing

traditional physical desktop environments with remotely
controlled computing environments

⚫ Desktop virtualization allows the users’ OS to be remotely
stored on a server in the data centre.

⚫ It allows the user to access their desktop virtually, from any
location by a different machine.

⚫ Users who want specific operating systems other than
Windows Server will need to have a virtual desktop.

⚫ Main benefits of desktop virtualization are user mobility,
portability, easy management of software installation,
updates, and patches.

⚫ 4. Storage Virtualization:
⚫ Storage virtualization is the pooling of physical storage

from multiple storage devices into what appears to be a
single storage device.
Storage virtualization is an array of servers that are
managed by a virtual storage system.

⚫ The servers aren’t aware of exactly where their data is
stored, and instead function more like worker bees in a
hive.

⚫ It makes managing storage from multiple sources to be
managed and utilized as a single repository.

⚫ 5. Server Virtualization:
⚫ Server virtualization is the process of dividing a physical

server into multiple unique and isolated virtual
servers by means of a software application.

⚫
Here, the central-server(physical server) is divided into
multiple different virtual servers by changing the identity
number, processors.

⚫ So, each system can operate its own operating systems in
isolate manner.

⚫ 6. Data virtualization:
⚫

This is the kind of virtualization in which the data is
collected from various sources and managed that at a
single place without knowing more about the
technical information like how data is collected, stored
& formatted then arranged that data logically.

⚫ Many big giant companies are providing their services
like Oracle, IBM, At scale, Cdata, etc.

Clients
⚫ What’s a client?
⚫ Definition: “A program which interacts with a human

user and a remote server.”
⚫ Typically, the user interacts with the client

via a GUI.
⚫ Of course, there’s more to clients than simply providing

a UI. Remember the multi-tiered
levels of the Client/Server architecture from earlier

Generic Client/Server Environment

Generic Client/Server Architecture

Servers
⚫ What’s a server?
⚫ Definition: “A process that implements a specific

service on behalf of a collection of clients”.
⚫ Typically, servers are organized to do one of two

things:

1. Wait
2. Service

… wait … service … wait … service … wait …

Servers: Iterative and Concurrent
⚫ Iterative: server handles request, then returns results to

the client; any new client requests must wait for
previous request to complete
(also useful to think of this type of server as sequential).

⚫ Concurrent: server does not handle the request itself; a
separate thread or sub-process handles the request and
returns any results to the client; the server is then free
to immediately service the next client (i.e., there’s no
waiting, as service requests are processed in parallel).

Server “States”- Stateful & Stateless
⚫ A Stateful server remember client data (state) from one request to

the next. Stateful servers, do store session state. They may,
therefore, keep track of which clients have opened which files,
current read and write pointers for files, which files have been
locked by which clients, etc.

⚫ A Stateless server keeps no state information.Stateless file servers
do not store any session state.

⚫ Programming :
⚫ Stateful server is harder to code.
⚫ Stateless server is straightforward to code.
⚫ Crash recovery :
⚫ Stateful servers have difficult crash recovery due to loss of

information.
⚫ Stateless servers can easily recover from failure because there is

no state that must be restored.

Code Migration
⚫ Traditionally, code migration in distributed

systems took place in the form of
process migration in which an entire process was
moved from one machine to another.

⚫ The basic idea is that overall system performance can
be improved if processes are moved from
heavily-loaded to lightly-loaded machines.

⚫ Process migration can be used to load balancing, to
achieve overall better utilization of a distributed
system by ensuring that the computational load is
appropriately shared among the processors.

⚫ Code migration in the broadest sense deals with
moving programs between machines, with the
intention to have those programs be executed at the
target.

Process and Code Migration

⚫ Under certain circumstances, in addition to the
usual passing of data, passing code (even while it is
executing) can greatly simplify the design of a DS.

⚫ However, code migration can be inefficient and very
costly.

⚫ So, why migrate code?

Reasons for Migrating Code

⚫ Why? Biggest single reason: better performance.
⚫ The big idea is to move a compute-intensive task

from a heavily loaded machine to a lightly loaded
machine
“on demand” and “as required”.

Code Migration Examples
⚫ Moving (part of) a client to a server – processing data

close to where the data resides. It is often too expensive
to transport an entire database to a client for
processing, so move the client to the data.

⚫ Moving (part of) a server to a client –
The use of local error-checking (using JavaScript) on
Web forms is a good example of this type of processing.
Error-check the data close to the user, not at the server.

SOME SOLVED QUESTIONS

USER LEVEL VS KERNEL LEVEL
User level thread Kernel level thread
User thread are
implemented by users.

kernel threads are
implemented by OS.

OS doesn’t recognize user
level threads.

Kernel threads are
recognized by OS.

Implementation of User
threads is easy.

Implementation of Kernel
thread is complicated.

Context switch time is less. Context switch time is more.

Example : Java thread,
POSIX threads. Example : Window Solaris.

⚫ WHY ULT: User-level threads are easier and faster to
create than kernel-level threads. They can also be
more easily managed. User-level threads can be run on
any operating system. There are no kernel mode
privileges required for thread switching in user-level
threads.

⚫ WHY KLT: If one kernel thread perform blocking
operation then another thread can continue execution.

⚫ Actions taken by a kernel to context-switch
between kernel-level threads are-

 Context switching between kernel threads typically
requires saving the value of the CPU registers from the
thread being switched out and restoring the CPU
registers of the new thread being scheduled.

What resources are used when a thread created?
How do they differ from those when a process is
created?

⚫ When a thread is created the threads does not require
any new resources .The thread shares the resources
like memory of the process to which they belong to.

⚫ Where as if a new process creation is very heavyweight
because it always requires new address space to be
created .

⚫ The actions taken by a thread library to context
switch between user-level threads.

⚫ Answer: In general, context switching between user
threads involves taking a user thread of its Light
Weight Process and replacing it with another thread.
This act typically involves saving and restoring the
state of the registers.

⚫ Under what circumstances does a multithreaded
solution using multiple kernel threads provide
better performance than a single-threaded
solution on a single-processor system?

⚫ When a kernel thread suffers a page fault, another
kernel thread can be switched in to use the
interleaving time in a useful manner. A
single-threaded process, on the other hand, will not be
capable of performing useful work when a page fault
takes place. Therefore, in scenarios where a program
might suffer from frequent page faults or has to wait
for other system events, a multi-threaded solution
would perform better even on a single-processor
system.

⚫ Can a multithreaded solution using multiple
user-level threads achieve better performance on
a multiprocessor system than on a single
processor system? Explain.

⚫ A multithreaded system comprising of multiple
user-level
threads cannot make use of the different processors in
a multiprocessor system simultaneously. The operating
system sees only a single process and will not schedule
the different threads of the process on separate
processors. Consequently, there is no performance
benefit associated with executing multiple user-level
threads on a multiprocessor system.

⚫ Provide two programming examples in which
multithreading does not
provide better performance than a
single-threaded solution.

⚫ Any kind of sequential program is not a good
candidate to be threaded. An example of this is a
program that calculates an individual tax return. (2)
Another example is a
"shell" program such as the C-shell or Korn shell. Such
a program must closely monitor its own working space
such as open files, environment variables, and current
working directory.

