
BY ANKU JAISWAL
 

CHAPTER 2 

ARCHITECTURES



Contents

▪ 2.1 ARCHITECTURAL STYLES
▪ 2.2. MIDDLEWARE ORGANIZATION
▪ 2.3. SYSTEM ARCHITECTURES
▪ 2.4. EXAMPLE  ARCHITECTURE



OVERVIEW

▪ Distributed systems are often complex pieces of 
software of which the components are by 
definition dispersed across multiple machines.

▪  To master their complexity, it is crucial that 
these systems are properly organized.



Distributed System Architecture 

▪ Distributed system architectures are bundled 
up with components and connectors. 

▪ Components can be individual nodes or 
important components in the architecture 

▪ whereas connectors are the ones that 
connect each of these components. 





▪ Component: A modular unit with well-defined 
interfaces; replaceable; reusable 

▪ Connector: A communication link between 
modules which mediates coordination or 
cooperation among components 



So the idea behind distributed architectures is 
to:
▪  have these components presented on 

different platforms, 
▪ where components can communicate with 

each other over a communication network in 
order to achieve specifics objectives.



ARCHITECTURES

• There are different ways on how to view the 
organization of a distributed system:

• Software architectures

• System architecture



Software Architectures
• The organization of distributed systems is mostly 

about the software components that constitute the 
system

• These software architectures tell us how the various 
software components are to be organized and how 
they should interact 



2.1 ARCHITECTURAL STYLES
• Designing or adopting an architecture is crucial for 

the successful development of large systems
Architectural style 
• It is formulated in terms of components
• the way that components are connected to each 

other, 
• the data exchanged between components and 

finally how these elements are jointly configured 
into a system



▪ Layered architectures

▪ Object-based architectures

▪ Data-centered architectures

▪ Event-based architectures

Using components and connectors, we can come to 
various configurations, which, in turn have been 
classified into architectural styles



1. Layered Architecture

▪ The layered architecture separates layers of 
components from each other, giving it a much 
more modular approach. 

▪ A well known example for this is the OSI model 
that incorporates a layered architecture when 
interacting with each of the components.

▪  Each interaction is sequential where a layer will 
contact the adjacent layer and this process 
continues.



▪ The layers on the bottom provide a service to 
the layers on the top. 

▪ The request flows from top to bottom, 
whereas the response is sent from bottom to 
top. 

▪ The advantage of using this approach is that, 
each layer can be easily replaced or modified 
without affecting the entire architecture.





• Components are organized in a layered fashion where a 
component at layer L is allowed to call components at the 
underlying layer  Li-1

• Control generally flows from layer to layer: requests 
go down the hierarchy whereas the results flow 
upward



▪ This model has been widely adopted by the 
networking community; 

▪ An key observation is that control generally 
flows from layer to layer: requests go down 
the hierarchy whereas the results flow 
upward.



2. Object-based Architectures

▪ Each object corresponds a component, which are 
connected through a (remote) procedure call 
mechanism



▪ This architecture style is based on loosely coupled 
arrangement of objects. 

▪ This has no specific architecture like layers. Like in layers, 
this does not have a sequential set of steps that needs to 
be carried out for a given call. 

▪ Each of the components are referred to as objects, where 
each object can interact with other objects through a given 
connector or interface. 

▪ These are much more direct where all the different 
components can interact directly with other components 
through a direct method call.



▪ These are generally called Remote Procedure 
Calls (RPC). Some popular examples are Java 
RMI, Web Services and REST API Calls. 

▪ This has the following properties.

▪ This architecture style is less structured. 

▪ component = object 
▪ connector = RPC 



3. Data-centered architectures

• Evolve around the idea that processes 
communicate through a common 
(passive or active) repository



▪ As the title suggests, this architecture is 
based on a data center, where the primary 
communication happens via a central data 
repository. 

▪ This common repository can be either active 
(actual data store) or passive(mirror). 

▪ This is more like a producer consumer 
problem.
 



▪ The producers produce items to a common 
data store, and the consumers can request 
data from it. 

▪ This common repository, could even be a 
simple database. 

▪ But the idea is that, the communication 
between objects happening through this 
shared common storage.



Event-based Architectures

▪ In event-based architectures, processes essentially 
communicate through the propagation of events, 
which optionally also carry data, as shown in Fig.

▪ For distributed systems, event propagation has 
generally been associated with what are known as 
publish/subscribe systems.

▪ The basic idea is that processes publish events after 
which the middleware ensures that only those 
processes that subscribed to those events will receive 
them. 





▪ The entire communication in this kind of a 
system happens through events. 

▪ When an event is generated, it will be sent to 
the bus system. 

▪ With this, everyone else will be notified 
telling that such an event has occurred. 



▪ So, if anyone is interested, that node can pull 
the event from the bus and use it. 

▪ Sometimes these events could be data, or 
even URLs to resources. 

▪ So the receiver can access whatever the 
information is given in the event and process 
accordingly. 



▪ These events occasionally carry data. An 
advantage in this architectural style is that, 
components are loosely coupled. 

▪ So it is easy to add, remove and modify 
components in the system. 

▪ Some examples are, publisher - subscriber 
system, Enterprise Services Bus (ESB) and 
akka.io.

http://akka.io/


Data space

▪ Event-based architectures can be combined with 
data-centered architectures, yielding what is also 
known as shared data spaces



2.2 SYSTEM ARCHITECTURES

Deciding on software components, their 
interaction, and their placement leads to an 
instance of a software architecture, also called 
a system architecture



2.2 SYSTEM ARCHITECTURES

▪ 2.2.1 Centralized Architectures
▪ 2.2.2 Decentralized Architectures
▪ 2.2.3 Hybrid Architectures



Centralized architectures
■ one server implements the software components 
■ remote clients can access that server

Decentralized architectures
■ machines more or less play equal roles, as well as 

hybrid organizations





2.2.1 Centralized 
architecture 
▪ The centralized architecture is defined as every 

node being connected to a central coordination 
system, and whatever information they desire to 
exchange will be shared by that system. 

▪ A centralized architecture does not automatically 
require that all functions must be in a single place 
or circuit, but rather that most parts are grouped 
together and none are repeated elsewhere as 
would be the case in a distributed architecture.



▪ It consists following types of architecture:
▪ Client-server
▪ Application Layering



▪ Client Server
▪ Processes in a distributed system are split into two 

(potentially overlapping) groups in the fundamental 
client-server architecture. 

▪ A server is a program that provides a particular 
service, such as a database service or a file system 
service. 

▪ A client is a process that sends a request to a server 
and then waits for the server to respond before 
requesting a service from it. 

▪ This client-server interaction, also known as 
request-reply behavior is shown in the figure below:



General interaction between a 
client and a server

    In the basic client-server model, processes in a distributed 
system are divided into two (possibly overlapping) groups. 

A server is a process implementing a specific service. 

A client is a process that requests a service from a server by 
sending it a request and subsequently waiting for the 
server's reply





Reliable connection-oriented 
protocol
• reliable connection-oriented protocol
• sets up a connection to the server
• sending the request
• Uses that same connection, to send the reply 

message
• The connection is torn down

• setting up and tearing down a connection is relatively 
costly, 



Application Layering

▪ The user-interface level
▪ The processing level
▪ The data level



▪ The user interface level: The user-interface 
level is often implemented by clients. 

▪ Programs that let users interact with 
applications make up this level.



▪ The Processing level: This is the middle part 
of the architecture. 

▪ This is a logical part of the system where all 
the processing actions are performed on the 
user interaction and the data level. 

▪ It processes the requests from the user 
interface and performs certain operations.



▪ The Data level: The data level in the 
client-server model contains the programs 
that maintain the actual data on which the 
applications operate.



Internet search engine



2.2.2 Decentralized 
Architectures
Decentralized Architecture refers to a system design 
in which control, decision-making, and management are 
distributed across multiple nodes, rather than being 
concentrated in a central authority or server. 

This structure contrasts with centralized systems, where 
a single point of control governs the entire system. 

In a decentralized architecture, there is no single failure 
point, which provides higher resilience, scalability, and 
fault tolerance.



Features of Decentralized 
Architecture
Distributed Control

Scalability

Redundancy and Fault Tolerance

Security

Transparency

Autonomy of Nodes:



Types of Decentralized 
Architecture

Peer-to-Peer (P2P) Networks:
In a P2P network, all participating nodes are equal, and they 
share resources and services directly with each other. 
Examples of this type of architecture include file-sharing 
systems (e.g., BitTorrent) and cryptocurrency networks (e.g., 
Bitcoin).
Blockchain:
Blockchain is a decentralized, distributed ledger technology 
where data is stored across multiple nodes, each of which 
has a copy of the entire ledger. It provides an immutable 
record of transactions and enables decentralized applications 
(dApps) to run without needing a central server. Popular 
examples include Ethereum and Bitcoin.



Overlay Network

▪ An overlay network is a computer 
network which is built on the top of another 
network

▪ Nodes in the overlay can be thought of as being 
connected by virtual or logical links, each of 
which corresponds to a path, perhaps through 
many physical links, in the underlying network

▪



▪ For example, distributed systems such 
as cloud computing, peer-to-peer networks, 
and client-server applications are overlay 
networks because their nodes run on top of 
the Internet

▪ The Internet was originally built as an overlay 
upon the telephone network while today the 
telephone network is increasingly turning into 
an overlay network built on top of the 
Internet



HYBRID ARCHITECTURE

▪ Hybrid systems are often based on both client 
server architectures and p2p networks. 

▪ A famous example is Bittorrent, which we use 
everyday. 





2.2.3 Hybrid Architectures

▪ Edge-Server
▪ Collaborative Distributed Systems



Edge-Server Systems

▪ servers are placed "at the edge" of the network
▪ This edge is formed by the boundary between 

enterprise networks and the actual Internet
? For example, Internet Service Provider (ISP)

▪ end users at home connect to the Internet 
through their ISP

▪ the ISP can be considered as residing at the edge 
of the Internet



Edge-Server Systems



Edge-Server

▪ An edge server, in a system administration 
context, is any server that resides on the 
"edge" between two networks, typically a 
private network and the Internet. 



COLLABORATIVE DISTRIBUTED SYSTEM

A collaborative distributed system refers to a network 
of independent computing nodes (such as computers, 
servers, or devices) that work together in a coordinated 
manner to achieve a common goal, while being 
geographically spread out or distributed. 

In such systems, collaboration refers to the way these 
nodes interact, share resources, and solve problems 
collectively, despite being physically separated. 

These systems are typically designed to be 
fault-tolerant, scalable, and flexible.



Examples of CDS

Cloud computing platforms (like AWS, Google Cloud, 
and Microsoft Azure) provide collaborative distributed 
environments where multiple servers and services 
cooperate to handle large-scale applications.
Peer-to-peer networks (such as BitTorrent) where 
users share resources directly with each other.
Distributed databases that maintain copies of data on 
multiple nodes and ensure consistency and availability.
Blockchain systems like Bitcoin and Ethereum, where 
the system's nodes collaborate to validate and store 
transactions securely.



SELF-MANAGEMENT IN 
DISTRIBUTED SYSTEMS
▪ reason, distributed systems should be adaptive

full distribution transparency is not what most 
applications actually want

▪ autonomic computing
organizing distributed systems as high-level 
feedback-control systems allowing automatic 
adaptations to changes

▪ self-managing
self-healing,
self-configuring
self-optimizing



MIDDLEWARE ORGANIZATION

▪ In distributed system various heterogeneous 
devices are spread all over world.

▪ Distributed system can achieve this 
consistency through a common layer to 
support the underlying hardware and OS.

▪ This common layer is called Middleware.



Middleware is software that acts as a bridge or 
intermediary between different software applications or 
components within a distributed computing system. 

It enables communication and data management 
between disparate systems, helping them work together 
seamlessly. Middleware typically operates "in the 
middle" between the operating system and the 
applications, providing a common platform for 
communication, authentication, data processing, and 
other services.





Function of Middleware

▪ Hides the details  of distributed applications
▪ Hides the heterogeneity of hardware, 

operating systems and protocols
▪ Provides uniform and high-level interfaces 

used to make interoperable, reusable and 
portable applications

▪ Provides a set of common services that 
enhances collaboration between applications



▪ Middleware is used to interconnect various 
kinds of nodes together.

▪ Two important types of design pattern often 
applied to organization of middleware are:
-wrapper
-interceptors



 Interceptors

▪ an interceptor is a software construct that 
will break the usual flow of control and allow 
other (application specific) code to be 
executed.



Wrappers

a wrapper is a function that is intended to call one 
or more other functions, sometimes purely for 
convenience, and sometimes adapting them to do 
a slightly different task in the process. For 
example, SDK Libraries for AWS are examples of 
wrappers.


