INSTITUTE OF ENGINEERING PULCHOWK CAMPUS

Network Security and Analysis

M.Sc in Information and Communication Engineering

HASH FUNCTION

Presented by:

Bibek Gautam (080msice005)

Sujal Subedi (080msice018)

Submitted to:

Asst. Prof. Anku Jaiswal
Department of Electronics and Communication Engineering, Pulchowk
Campus

Agenda

- Background
- Hash function
- Properties
- Popular Hash Function
- Applications
- Creating a digital signature
- Secure Hash Algorithm(SHA)
- . SHA-512
- Steps For SHA-512 Logic

Background

Message Authentication

- Authentication is concerned with protecting, confidentiality, integrity, authentication and non-repudiation
- Three methods used for message authentication:
 - message encryption
 - message authentication code (MAC)
 - hash Function

- Hash function are mathematical function used in cryptography.
- It takes various inputs (messages or data) and transforms them into fixed-length strings of characters
- Hash function generate a unique "fingerprint" for each input.

Figure: Hash Generation process

Properties of Hash Function

- Fixed Output Size: Produces a fixed length output for any arbitary input size.
- Pre-Image Resistance (one-way trip):computationally infeasible to find x such that H(x)=h
- Second Pre-Image Resistance: given an input and its hash, it is computationally infeasible to find $y \neq x$ such that H(y) = H(x)
- Collision Resistance: computationally infeasible to identify two
 different inputs of any length that produce the same hash.
- Efficiency of Operation: For any given x Computation of h(x) is relatively easy and considerably faster than symmetric encryption.

Popular Hash Functions

- Message Digest (MD): MD2, MD4, MD5, and MD6 are members of the MD family. It was adopted as the RFC 1321, Internet Standard. It is a 128-bit hash function.
- Secure Hash Function (SHA): four SHA algorithms which make up the SHA family are SHA-0, SHA-1, SHA-2, and SHA-3. SHA-512 is one of the SHA variants in the SHA-2 family.
- **CityHash:** non-cryptographic hash function that is designed for fast hashing of large amounts of data. It is optimized for modern processors and offers good performance on both 32-bit and 64-bit architectures.
- **BLAKE2**: a fast and secure hash function that improves upon SHA-3. widely used in applications like cryptocurrency mining that need fast hashing.

Applications:

- Password: Hash of the password is stored by operating system
- Intrusion detection: store H(f) for each file on the system and secure the hash value.
- Digital Signature

Hash Function Application in Digital Signature

Sender side

Receiver side

Secure Hash Algorithm(SHA)

- Developed by National Institute of Standards and Technology (NIST) as an U.S. Federal Information Processing Standard (FIPS)
 - □SHA-0 (1993 AD)
 - □SHA-1 (1995 AD)
 - □SHA-256(2002 AD)
 - □SHA-384(2002 AD)
 - □SHA-512 (2002 AD)
- Developed in 1993 AD and based on hash function MD4
- SHA is designed to provide a different hash even if only one character in the message changes

Secure Hash Algorithms(SHA)

	SHA-1	SHA-224	SHA-256	SHA-384	SHA-512
Message Digest Size	160	224	256	384	512
Message Size	< 2 ⁶⁴	< 2 ⁶⁴	< 2 ⁶⁴	< 2128	< 2128
Block Size	512	512	512	1024	1024
Word Size	32	32	32	64	64
Number of Steps	80	64	64	80	80

SHA-512

- Secure Hash Algorithm-512
- Message is divided in to plain text block of 1024 bits
- Each plain text block is sub-divided into 80 words of 64-bit
 - ☐ 16 words formed just by dividing the plain text block by 64 bit each
 - ☐ Rest 64 words are formed by conducting different operations like rotate, shifting, and, or on the plain text
- The words are processed 80 times on at a time and the result is stored in a hash buffer (a-g)
- The result in the buffer after the 80 round gives the immediate hash value

SHA-512

Message Digest Generation Using SHA-512

Steps for SHA-512 Logic-[1]

Append padding bits

- □ Padding is done until the length of the string is < (message_length mod (1024 128))
- □ Padding consists of a single-1 bit followed by the necessary number of 0-bits

2. Append length

- ☐ A block of 128 bits is appended to the message
- \square Sequence of 1024-bit plain text blocks $M_1, M_2, ..., M_N$ are made

3. Initialize hash buffer

- ☐ A 512-bit buffer is used to hold the hash function
- ☐ The buffer can be represented as eight 64-bit registers (a,b,c,d,e,f,g,h)
- ☐ These registers are initialized as hexadecimal values

Steps for SHA-512 Logic-[2]

4. Processing of the Plain text blocks

- Message block is divided into 80 words of 64-bit
- The hash buffers are processes with each word and updated
- On each round, different logical operations are performed
- Finally, after 80 rounds the immediate hash value is obtained

Steps for SHA-512 Logic-[3]

5. Output

- ☐ Each 1024-bit block generate a hash code for its block
- ☐ The hash code of the previous block is used for the next successive block
- ☐ After all N 1024-bit blocks have been processed, the output from the Nth stage is the 512-bit Final Hash Code

Thank You!