

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

THAPATHALI CAMPUS

Assignment

Past Question – 2075

Submitted By:

Prajesh Shrestha (THA076BCT028)

Pratigya Paudel (THA076BCT029)

Sushank Ghimire (THA076BCT047)

Ujjwal Paudel (THA076BCT048)

Submitted To:

Er. Anku Jaiswal

Department of Electronics and Computer Engineering

Thapathali Campus

Kathmandu, Nepal

August, 2023

2075 – RREGULAR / BACK

1. Why distributed system is preferred over centralized system? Explain the layers

of transparency.

 A centralized system refers to a computing or organizational structure in which a single

controlling entity holds authority, control, and decision-making power over the entire

system.

A distributed system is a computing or organizational arrangement in which multiple

independent entities, such as computers, servers, or nodes, work together to achieve a

common goal or provide a shared service.

Distributed systems are increasingly preferred over centralized systems due to their

ability to offer enhanced resilience, scalability, and performance. Unlike centralized

systems, which rely on a single point of control and are susceptible to single points of

failure, distributed systems distribute authority and resources across multiple entities.

This inherent decentralization enhances fault tolerance, as failures in one part of the

system are less likely to lead to a complete system breakdown. Additionally, the

scalability of distributed systems is superior, as new entities can be seamlessly added

to accommodate growing demands. Moreover, distributed systems can capitalize on

parallel processing capabilities, improving overall performance and response times.

These benefits, combined with the flexibility to optimize resource utilization and

mitigate geographical limitations, make distributed systems a compelling choice for

modern computing needs.

Transparency is defined as the concealment from the user and the application

programmer of the separation of components in a distributed system, so that the system

appears as a whole and not as a collection of independent components. The different

layers of transparency are:

i. Access Transparency: This transparency ensures that users and applications

perceive the distributed system as a single, unified system. It hides the differences in

data storage locations, distribution, and access mechanisms. Users interact with

resources without needing to know their physical locations or distribution across nodes.

ii. Location Transparency: Location transparency abstracts the physical location

of resources from users and applications. Users can access resources using a consistent

naming scheme or identifier regardless of where the resources are physically located in

the distributed system.

iii. Migration Transparency: This type of transparency allows resources, such as

processes or data, to be moved from one location to another within the distributed

system without affecting user interactions or application functionality. Users remain

unaware of the resource's movement.

iv. Replication Transparency: Replication transparency hides the fact that multiple

copies of a resource exist in different locations. Users and applications can access a

resource without needing to know whether they are interacting with a primary or

replicated copy.

v. Concurrency Transparency: Concurrency transparency ensures that users and

applications are shielded from the complexities of concurrent access to shared

resources. It manages the coordination and synchronization required to maintain data

consistency without involving users in these details.

2. What do you mean by RMI software? Comparatively discuss RMI with RPC.

 RMI stand for Remote Method Invocation and is a Java-based technology that enables

communication and interaction between different Java objects or applications running

on separate Java Virtual Machines(JVMs). RMI allows a Java program to invoke

methods on remote objects, as if they were local objects with in the same JVM.

i. Concept

RMI (Remote Method Invocation): RMI is a Java-based technology that enables objects

in a distributed system to invoke methods on remote objects as if they were local

objects. It's more object-oriented and integrates seamlessly with Java's object model.

RPC (Remote Procedure Call): RPC is a general concept that exists in various

programming languages and technologies. It allows a program to execute procedures

(functions/methods) on a remote server as if they were local, abstracting the underlying

network communication.

2. Language and Ecosystem:

RMI: RMI is closely associated with Java. It's a Java-specific technology and relies on

Java interfaces and object serialization. RMI is mainly used within the Java ecosystem.

RPC: RPC is more language-agnostic. It can be implemented in various programming

languages, making it more versatile for multi-language environments.

3. Data Serialization:

RMI: In RMI, objects are passed by reference. Java objects are serialized and

deserialized automatically. This can simplify the programming process, as you're

working with objects directly.

RPC: RPC usually involves passing data in a more primitive form, like strings or binary

data. The programmer often has to handle data serialization and deserialization

manually.

4. Interface Definition:

RMI: In RMI, the interface of the remote object is defined using Java interfaces. The

remote methods are declared in the interface and implemented in the actual class.

RPC: The remote methods in RPC are defined using a more traditional programming

approach, often involving function signatures and arguments.

5. Error Handling:

RMI: RMI provides richer error handling mechanisms, often using Java exceptions.

This can make it easier to diagnose and handle errors in a more structured manner.

RPC: Error handling in RPC is typically less structured and more dependent on the

specific implementation.

3. Compare Stateful and Stateless service. Describe the architecture and operation

of SUNNFS with its services.

 A stateful service is a type of software service or component within a system that

maintains and manages specific state or data related to individual client interactions

over time. A stateless service is a type of software service or component within a system

that does not retain any client-specific data or context between individual interactions.

Their differences are as follows:

Stateless Protocol Stateful Protocol

Stateless Protocol does not require the

server to retain the server information or

session details.

Stateful Protocol require server to save

the status and session information.

In Stateless Protocol, there is no tight

dependency between server and client.

In Stateful protocol, there is tight

dependency between server and client

The Stateless protocol design simplify

the server design.

The Stateful protocol design makes the

design of server very complex and heavy.

Stateless Protocols works better at the

time of crash because there is no state that

must be restored, a failed server can

simply restart after a crash.

Stateful Protocol does not work better at

the time of crash because stateful server

have to keep the information of the status

and session details of the internal states.

Stateless Protocols handle the transaction

very fast.

Stateful Protocols handle the transaction

very slowly.

SUNNFS is a protocol and file system commonly used for sharing files and data across

a network. SUNNFS is a distributed file system that allows remote clients to access

files and directories on a server as if they were local.

Architecture:

The architecture of NFS involves two main components: the NFS server and the NFS

client.

NFS Server: The NFS server hosts the shared file systems and directories that are

accessible to remote clients. It manages requests from clients to read, write, and manage

files on the server. The server exports (makes available) certain directories to be

mounted by remote clients.

NFS Client: The NFS client is a system that accesses files and directories on the NFS

server. It mounts the remote file systems from the server onto its local file system

hierarchy. Once mounted, the client can interact with these remote files as if they were

local.

Operation:

Mounting: The NFS client initiates a mount operation to connect to the NFS server.

This involves specifying the server's hostname or IP address and the exported directory

to be mounted. Once mounted, the remote files become accessible to the client.

File Access: The client can now perform file operations on the mounted remote

directories just like it would on local directories. This includes reading, writing, and

managing files and directories.

Remote Procedure Call (RPC): Communication between the NFS client and server is

facilitated using Remote Procedure Call (RPC). RPC allows the client to invoke

procedures or methods on the server as if they were local, and the server responds with

the results.

Caching: To improve performance, NFS clients often employ caching mechanisms.

Cached data allows the client to avoid unnecessary network requests for frequently

accessed files. However, caching can lead to issues if the data on the server changes

without the client's knowledge.

Services:

NFS provides several services to enable file sharing and access:

File Access: NFS allows remote clients to access files and directories on the server over

a network connection. This enables sharing data and resources across different

machines.

File Locking: NFS provides file locking mechanisms to ensure that multiple clients

don't interfere with each other when accessing and modifying the same file

simultaneously.

User Authentication: NFS supports user authentication to ensure that only authorized

users can access shared resources. This is often integrated with the underlying

authentication system of the operating systems involved.

Mounting and Exporting: NFS enables the exporting of directories on the server,

allowing clients to mount these exported directories on their local systems.

Error Handling: NFS includes error handling mechanisms to deal with situations such

as network interruptions, server unavailability, or file access errors.

4. Compare heterogeneous and homogeneous distributed system. Explain the

CORBA architecture and its services.

The differences are as follows:

Homogeneous System Heterogeneous System

In a homogeneous distributed system, all

nodes or components have the same

hardware, software, and configurations.

In a heterogeneous distributed system,

nodes or components have varying

hardware, software, and configurations.

Homogeneous systems are generally

easier to manage because the uniformity

allows for consistent deployment,

Heterogeneous systems are more flexible

and adaptable to different workloads

maintenance, and updates across all

nodes.

because nodes can be optimized for

specific tasks.

Since all components are identical, there

are fewer compatibility issues and

potential conflicts between different

hardware or software versions.

Certain tasks can be offloaded to nodes

optimized for those tasks, leading to

potentially better overall performance

and resource utilization.

Resource allocation and load balancing

can be more efficient since the nodes

have similar capabilities and can handle

similar types of tasks.

Managing a heterogeneous system can be

more complex due to the need to handle

various hardware and software

configurations.

CORBA, which stands for Common Object Request Broker Architecture, is a

middleware technology developed to facilitate communication between distributed

objects in heterogeneous computing environments. It allows software components

written in different programming languages and running on different platforms to

interact seamlessly by providing a standardized communication mechanism. CORBA

architecture consists of various components and services to enable this communication.

Components of CORBA Architecture:

Object Request Broker (ORB): The ORB is the heart of the CORBA architecture. It

acts as an intermediary between distributed objects, handling communication, object

activation, method invocation, and other essential aspects of distributed computing.

Interface Definition Language (IDL): CORBA uses an Interface Definition Language

(IDL) to define the interfaces of objects. IDL provides a platform-independent way to

describe object interfaces, datatypes, and method signatures.

Object Adapter: The Object Adapter is responsible for managing the lifecycle of

objects, activating and deactivating them as needed, and providing a transparent

interface for clients to access remote objects.

Skeletons and Stubs: Stubs are client-side proxies that allow a local program to

interact with a remote object as if it were a local object. Skeletons, on the other hand,

are server-side implementations that receive remote method calls and invoke the

corresponding methods on the actual object.

Implementation Repository: This component keeps track of the object

implementations available in the distributed system. It helps clients locate the

appropriate implementations based on the object's interface.

CORBA Services

Object Request Broker (ORB) Services:

• Naming Service: Allows objects to be named and located in the distributed

system.

• Trading Service: Enables dynamic discovery of available object services and

implementations.

• Event Service: Facilitates asynchronous communication by allowing objects to

publish and subscribe to events.

Common Facilities:

• Life Cycle Service: Manages the lifecycle of CORBA objects, including object

creation, activation, and deactivation.

• Concurrency Control Service: Provides mechanisms for managing concurrent

access to objects in a multi-threaded environment.

Persistence Service: Allows objects to be stored persistently so that they can survive

system restarts.

Transaction Service: Enables distributed transactions, ensuring that a set of operations

on different objects are either all executed or all rolled back in case of failures.

Security Service: Provides mechanisms for securing communications and data integrity

in the distributed environment.

Query Service: Allows clients to query the Implementation Repository to discover

available object implementations.

5. List the problems of Lamports clock with example. How vector clock is beneficial

than Lamports clock? Explain with implementation rules of vector clock.

 Lamport's logical clocks are a simple mechanism for ordering events in distributed

systems. Each process maintains a logical clock that is incremented whenever an event

occurs, and when messages are sent and received. However, they have several

limitations:

• No Event Ordering Within the Same Process: Lamport clocks cannot distinguish

between events that occur within the same process. If process A generates events

E1 and E2, it is possible for E2's timestamp to be less than E1's timestamp, violating

causality. Example: Process A sends a message M to process B and then locally

processes an event E. Since E2's timestamp can be less than E1's, E could appear to

have occurred before M at process B.

• Clock Drift and Synchronization: Lamport clocks do not account for clock drift or

time synchronization between different processes, which can lead to inaccurate

event ordering. Example: If process A's clock runs slightly faster than process B's

clock, an event E at A could have a higher timestamp than an event F at B, even if

F causally precedes E.

Vector clocks are an extension of Lamport's clocks that overcome the limitations

mentioned above. Instead of using a single scalar value, each process maintains a vector

of timestamps corresponding to all processes in the system. Vector clocks provide a

more accurate representation of causal relationships between events.

Benefits of Vector Clocks:

• Accurate Causality Tracking: Vector clocks can accurately capture the causality

relationships between events within and across processes.

• No Ambiguity for Concurrent Events: Unlike Lamport clocks, vector clocks can

distinguish between concurrent events within the same process.

• Awareness of Dependencies: Vector clocks can reveal which events are causally

related and which are independent, aiding in correctly identifying conflicts or

dependencies.

Implementation Rules of Vector Clocks:

• Initialization: Each process starts with a vector of zeros, representing no events

having occurred yet.

• Local Event: When a process performs a local event, it increments its own entry in

the vector clock.

• Send Operation: When a process sends a message, it includes its current vector

clock in the message.

• Receive Operation: Upon receiving a message with a vector clock, the receiving

process updates its own vector clock by taking the element-wise maximum of the

received vector clock and its own vector clock. Then, it increments its own entry

corresponding to its process.

6. How token system works for mutual exclusion in Distributed System? Explain

with token-based Algorithm.

In a Distributed System, the token-based mutual exclusion algorithm involves the use

of a token that circulates among participating nodes. To access a critical section, a node

must possess the token; once used, the token is passed to the next node. This ensures

that only the node holding the token can enter the critical section, preventing concurrent

access and maintaining mutual exclusion. When done, the node releases the token,

allowing another node to proceed.

Let’s take an example of Token Ring Algorithm.

Algorithm:

Initialization: Each node in the distributed system is organized in a ring topology. A

special token is initially possessed by one of the nodes and is passed along the ring in

a defined direction.

Requesting Critical Section: When a node wants to enter its critical section, it waits

until it receives the token. The token signifies that the node has the right to enter its

critical section.

Entering Critical Section: Once a node receives the token, it enters its critical

section and performs the required task. Other nodes in the ring recognize that the

token is in use and cannot access their critical sections.

Exiting Critical Section: After completing its critical section task, the node releases

the token and forwards it to the next node in the ring. This signifies that the node is

done with its critical section and is allowing another node to access its own critical

section.

Circulation of Token: The token continues to circulate around the ring. Nodes that

do not have the token are aware that they cannot enter their critical sections until they

receive the token.

Releasing Token: If a node doesn't need to access its critical section, it promptly

releases the token, allowing it to move to the next node in the ring.

This algorithm ensures mutual exclusion as only the node possessing the token can

enter its critical section. Other nodes must wait until they receive the token to access

their critical sections, maintaining the sequential order of access and preventing

multiple nodes from entering their critical sections concurrently.

7. How replication is used as a basic scaling technique in distributed system? Explain

the active replication model with its advantages and disadvantages.

Replication is a fundamental scaling technique in distributed systems where data or

services are duplicated across multiple nodes or servers. This approach aims to improve

performance, fault tolerance, and availability by distributing the load and ensuring data

redundancy. Replication can be applied to both data and computation, enabling more

efficient and responsive distributed systems.

The active replication model is a form of data replication where multiple copies of

data or services are maintained across different nodes in the distributed system. In this

model, all copies are kept synchronized in real-time using mechanisms like two-phase

commit protocols. When a client request is received, it is forwarded to all replicas.

Each replica independently processes the request and responds back to the client. The

client then waits for a majority of responses before proceeding, ensuring consistency.

Advantages:

• High Availability: Active replication provides high availability since even if

some replicas fail, the system can still function using the available replicas.

• Low Latency: Clients can receive responses from the nearest or least loaded

replica, reducing latency and improving performance.

• Load Distribution: Requests can be distributed across replicas, balancing the

load and preventing overloading of a single replica.

• Fault Tolerance: The system can continue to operate even if some replicas

fail, as long as a majority of replicas are still operational.

• Consistency: Active replication ensures strong consistency among replicas by

synchronizing them using protocols like two-phase commit.

Disadvantages:

• Increased Complexity: Maintaining synchronization and consistency among

replicas requires complex protocols, which can lead to higher system

complexity.

• Performance Overhead: Replicating data and processing requests across

replicas can introduce communication overhead, affecting performance.

• Resource Consumption: Active replication consumes more resources due to

the need to keep multiple replicas updated and operational.

• Potential Bottlenecks: If one replica lags behind in processing requests, it can

become a bottleneck, slowing down the overall system.

• Data Conflicts: In case of concurrent updates, conflicts might arise that need

to be resolved, potentially affecting consistency.

8. Compare nested transactions and distributed transactions. Explain the two phase

commit protocol of handling distributed transactions.

Aspect Nested Transaction Distributed Transactions

Transaction

Scope

Hierarchical structure, with

nested levels of transactions

within a single process.

Across multiple processes or

nodes in a distributed system

Atomicity Nested transactions can be

atomic at their respective levels,

but commit at outermost level

affects all.

Entire transaction is atomic,

committing or aborting as a

whole.

Isolation Inner transactions may observe

updates from outer levels

Strong isolation between

transactions, ensuring

consistency

Consistency Typically, inner transactions

use in-memory communication.

Global consistency across all

nodes is maintained.

Communication Generally, less overhead due to

in-process communication.

Requires inter-process or inter-

node communication.

Performance Nested transactions can be

atomic at their respective levels,

but commit at outermost level

affects all.

Involves communication

overhead between distributed

nodes.

Failure

Management

Outer transaction's failure

affects inner ones; rollbacks

propagate upwards.

Failures handled across

distributed nodes using

protocols.

Two-Phase Commit Protocol:

The Two-Phase Commit (2PC) protocol is a widely used technique to ensure the

coordinated commit or abort of a distributed transaction involving multiple nodes. It

guarantees that all nodes either commit or abort the transaction, maintaining global

consistency.

Phase 1 - Prepare Phase:

• Coordinator (transaction initiator) sends a "Prepare" message to all participants

(nodes involved in the transaction).

• Participants receive the message, evaluate their ability to commit, and reply with

either a "Yes" (ready to commit) or "No" (unable to commit).

Phase 2 - Commit Phase:

• Based on the responses received in Phase 1, the coordinator decides whether to

commit or abort the transaction.

• If all participants replied "Yes," the coordinator sends a "Commit" message to

all participants.

• Participants execute the actual commit operation, making changes permanent.

• If any participant replies "No" in Phase 1 or the coordinator encounters a failure,

it sends an "Abort" message to all participants.

• Participants discard changes made during the transaction.

9. What do you learn from Byzantine generals problem? Explain the basic principle

of K-fault tolerant system.

The Byzantine generals problem is a condition of a computer system, particularly

distributed computing systems, where components may fail and there is imperfect

information on whether a component has failed. The term takes its name from an

allegory, the “Byzantine generals problem”, developed to describe a situation in which,

to avoid catastrophic failure of the system, the system’s actors must agree on a

concerted strategy, but some of these actors are unreliable.

K-fault tolerant system

A K-fault tolerant system is designed to operate correctly even when up to K nodes (out

of a total of N nodes) are faulty or compromised. In other words, the system can handle

a certain number of failures without suffering complete failure itself. This is particularly

important in distributed systems, where nodes can experience failures due to hardware

issues, software bugs, or malicious attacks.

The basic principle of a K-fault tolerant system involves redundancy and replication of

data or processes. There are a few key concepts:

• Replication: Multiple copies of data or processes are maintained across different

nodes in the system. If one node fails, other nodes can continue to provide the

required functionality.

• Voting or Consensus: When a decision needs to be made, a majority vote is

taken into account. If a node is faulty or compromised, it will have less impact

on the overall decision-making process if there are enough correct nodes.

• Error Detection and Recovery: Mechanisms are in place to detect and identify

faulty nodes. If a node is detected as faulty, it can be replaced or its tasks can be

reassigned to other nodes.

• Distributed Algorithms: Algorithms and protocols are used to manage

communication and coordination among nodes. These algorithms are designed

to handle faults and reach consensus even in the presence of faulty nodes.

In a K-fault tolerant system, the value of K determines the level of fault tolerance. For

instance, a 2-fault tolerant system can withstand the failure of up to two nodes, while

still maintaining correct operation. Achieving K-fault tolerance often involves complex

algorithms and careful design to ensure that the system remains functional and reliable

even in the face of failures.

10. Write short notes on: (Any two)

i. Distributed Deadlock

A distributed deadlock is a situation in a distributed system where two or more

processes are blocked, waiting for resources held by each other. This can happen when

processes in different parts of the system are competing for the same resources.

Here are some things to keep in mind about distributed deadlocks:

• Distributed deadlocks can be more difficult to detect than deadlocks in

centralized systems. This is because the processes involved in a distributed

deadlock may be located on different machines, and they may not have direct

communication with each other.

• Distributed deadlocks can be more difficult to recover from than deadlocks in

centralized systems. This is because the system may need to take steps to

coordinate the recovery of the processes involved in the deadlock.

• Distributed deadlocks can have a more serious impact on a distributed system

than deadlocks in centralized systems. This is because the deadlock can affect

processes that are located on different machines.

ii. Forward and Backward recovery in distributed system

Recovery from an error is essential to fault tolerance, and error is a component of a

system that could result in failure. The whole idea of error recovery is to replace an

erroneous state with an error-free state. Error recovery can be broadly divided into two

categories.

• Backward Recovery:

Moving the system from its current state back into a formerly accurate condition from

an incorrect one is the main challenge in backward recovery. It will be required to

accomplish this by periodically recording the system’s state and restoring it when

something goes wrong. A checkpoint is deemed to have been reached each time (part

of) the system’s current state is noted.

• Forward Recovery:

Instead of returning the system to a previous, checkpointed state in this instance when

it has entered an incorrect state, an effort is made to place the system in a correct new

state from which it can continue to operate. The fundamental issue with forward error

recovery techniques is that potential errors must be anticipated in advance. Only then

is it feasible to change those mistakes and transfer to a new state.

2075 - BACK

1. Define distributed system? Explain Transparency Properties of Distributed

System.

A distributed system is a collection of interconnected computers or nodes that work

together to achieve a common goal, often by sharing resources, data, and processing

capabilities across a network. The primary characteristic of a distributed system is that

it allows multiple independent entities to collaborate and coordinate their actions as a

single unified system, even though these entities are physically separate and may have

different roles or responsibilities.

Key features of distributed systems include:

• Concurrency: Distributed systems handle multiple tasks simultaneously, allowing

for better resource utilization and improved performance.

• Scalability: They can easily scale to accommodate an increasing number of users

or resources by adding more nodes to the network.

• Fault Tolerance: Distributed systems are designed to continue functioning even if

individual nodes or components fail, enhancing system reliability.

• Transparency: Users and applications interacting with a distributed system should

not be aware of its distributed nature. It should appear as a single cohesive system.

• Communication: Nodes in a distributed system communicate with each other to

share data and coordinate activities. This communication can be achieved through

various protocols and mechanisms.

Transparency properties in distributed systems refer to the way these systems aim to

hide their complex and distributed nature from users and applications. The goal is to

provide a seamless and consistent experience as if the entire system were a single,

centralized entity, even though it consists of multiple interconnected components and

nodes. There are several transparency properties in distributed systems:

• Access Transparency:

Definition: Users and applications should be able to access and interact with resources

(e.g., data, services) in a distributed system without being aware of their physical

location, distribution, or underlying implementation details.

Example: When a user requests a file from a distributed file system, they don't need to

know where the file is actually stored or how the file system is distributed across

multiple servers.

• Location Transparency:

Definition: Users and applications should be able to access resources without needing

to know their physical location or how they are distributed across the network.

Example: A user can access a specific document or service using a logical name (e.g.,

URL) without needing to know the actual server's IP address.

• Migration Transparency:

Definition: Resources (such as processes or data) can be moved from one location to

another within the distributed system without affecting the users or applications that are

using those resources.

Example: A virtual machine (VM) can be migrated from one physical server to another

without interrupting the service it provides to users.

• Relocation Transparency:

Definition: Resources can be moved or relocated to different locations in the distributed

system without requiring users or applications to modify their access methods or

addresses.

Example: A web service can be moved to a different server or data center, and users

can still access it using the same URL without needing to update their bookmarks.

• Replication Transparency:

Definition: The fact that a resource is replicated (i.e., exists in multiple locations for

reasons such as fault tolerance or performance) should be hidden from users and

applications.

Example: A user can access a file, and the system transparently retrieves it from the

appropriate replica, without the user needing to specify which replica to use.

• Concurrency Transparency:

Definition: Users and applications can access shared resources in a distributed system

without being aware of the concurrent access by other users or applications.

Example: Multiple users can access a shared document without experiencing conflicts

or interference due to the concurrent access by others.

These transparency properties enhance the usability and manageability of distributed

systems by simplifying interactions and shielding users and applications from the

inherent complexities of such systems.

2. Why naming is necessary in distributed system? Explain Sun Network File System

architecture with its features.

Naming is essential in distributed systems for several reasons, as it provides clarity,

organization, and efficient communication within the system. Here are the key reasons

why naming is necessary in distributed systems:

iii. Location Abstraction:

• Names abstract the physical locations of resources in the distributed system.

• Users and applications can access resources without needing to know their exact

physical locations, which may change due to system dynamics.

iv. Simplifies Communication:

• Naming allows users and applications to communicate with each other or with

resources using meaningful and consistent identifiers (e.g., URLs, service names).

• It simplifies the addressing process, making it easier to locate and request resources

across the network.

v. Dynamic Resource Management:

• In dynamic distributed systems, resources may be added, removed, or relocated

frequently.

• Names provide a stable and logical reference to these resources, even as their

physical locations change, enabling dynamic resource management.

vi. Load Balancing and Failover:

• Naming enables load balancing mechanisms to distribute requests among multiple

instances of a resource, optimizing resource utilization.

• It supports failover scenarios, allowing the system to redirect requests to backup

resources when primary resources fail.

vii. Abstraction for Users and Applications:

• Names abstract the underlying complexity of the system, providing a simplified

view for users and applications.

• Users can interact with resources based on their names, without needing to

understand the intricacies of the distributed infrastructure.

viii. Scalability:

• As distributed systems scale, the number of resources and components can become

large and dynamic.

• Names provide a scalable way to manage and access these resources without

overwhelming users with low-level details.

ix. Decoupling Components:

• Naming decouples components in the distributed system, allowing them to evolve

independently.

• Changes to the location or implementation of a resource don't require

modifications to all clients if names are used as the reference.

x. Consistency and Integration:

• Naming helps maintain consistency and integration by providing a unified naming

scheme across different parts of the system.

• It enables effective integration of various services and components, ensuring a

cohesive user experience.

Sun Network File System (NFS)

The Sun Network File System (NFS) is a distributed file system designed by Sun

Microsystems (now Oracle) to allow remote access to files and directories over a

network. It provides a standardized protocol for sharing files and resources across

heterogeneous systems in a transparent and efficient manner. NFS has been widely used

in Unix-based environments and has undergone several versions of development, with

NFSv4 being the most recent and feature-rich version. Let's delve into the architecture

and features of NFS:

NFS Architecture:

1. Client-Server Model: NFS operates on a client-server model. The architecture

consists of NFS clients (systems requesting file access) and NFS servers (systems

providing file services). The clients mount remote file systems from the servers, making

them appear as if they were local directories.

2. Stateless Protocol: Early versions of NFS (e.g., NFSv2) were stateless, meaning that

the server did not maintain information about the client's ongoing operations. NFSv4

introduced a stateful model, allowing the server to maintain client state information,

which improves performance and enables more advanced features.

3. File Handle: Each file and directory on an NFS server is identified by a unique file

handle, which serves as an abstraction that allows clients to reference files across

network boundaries.

4. RPC (Remote Procedure Call): NFS communication is based on RPC, a standard

protocol for executing procedures on remote servers as if they were local. NFS

operations are defined as RPC calls, enabling clients to request file operations from the

server.

Key Features of NFS:

i. Transparency:

• NFS provides location transparency, allowing clients to access files without being

aware of the physical location or distribution of the data.

• Clients access files using the same paths and directory structures as they would for

local files.

ii. Caching:

• NFS clients can cache file data to reduce network traffic and improve performance.

• Caching is essential for frequently accessed files and helps mitigate the latency

introduced by network communication.

iii. Concurrency and Locking:

• NFS supports multiple clients accessing the same files simultaneously.

• File locking mechanisms are used to manage concurrent access, preventing

conflicts between clients attempting to modify the same file.

iv. Security:

• NFSv4 introduced enhanced security features, including support for strong

authentication and secure transport protocols (e.g., Kerberos, Transport Layer

Security - TLS).

• Access control lists (ACLs) can be used to define fine-grained permissions for file

access.

v. Directory and File Operations:

• NFS supports standard file operations such as read, write, create, delete, rename,

and attribute manipulation.

• Clients can perform these operations on remote files as if they were local, with the

server handling the network-level details.

vi. Support for Heterogeneous Environments:

• NFS is designed to work across different operating systems and hardware

platforms.

• It enables file sharing between Unix-like systems, Linux, and even Windows (with

some additional configurations or third-party tools).

vii. Automounting:

• NFS supports automounting, which allows directories to be mounted on-demand

when a client accesses them, improving efficiency and reducing resource usage.

viii. Kerberos Integration:

• NFSv4 can be integrated with Kerberos for strong authentication and secure

communication, enhancing the overall security of NFS-based file sharing.

In summary, NFS is a widely used distributed file system that provides transparent

access to remote files, caching for performance improvement, support for concurrent

access, security features, and compatibility with various operating systems. It has

evolved over time to address the needs of modern networks and offers a reliable

mechanism for sharing files across heterogeneous environments.

3. What is DNS? Explain the DNS working mechanisms with suitable example.

DNS, which stands for Domain Name System, is a fundamental technology that plays

a crucial role in the functioning of the Internet. It serves as a distributed and hierarchical

system for translating human-friendly domain names (like www.example.com) into the

numerical IP addresses (like 192.0.2.1) that computers use to identify and communicate

with each other on the Internet. DNS acts as the "phonebook" of the Internet, enabling

users to access websites, send emails, and perform various network services using

memorable domain names.

How DNS Works:

i. Hierarchical Structure:

• DNS is organized in a hierarchical structure, resembling an inverted tree or a

domain namespace.

• The top level consists of root servers, which are a small set of authoritative servers

responsible for the root zone (represented by the dot '.' at the end of domain

names).

• Beneath the root servers are top-level domains (TLDs) like .com, .org, .net, and

country-code TLDs like .us, .uk, etc.

• Further down the hierarchy, there are second-level domains (SLDs) and

subdomains.

ii. Domain Name Resolution:

• When a user enters a domain name in a web browser or sends an email, the local

system needs to find the corresponding IP address.

• The DNS resolution process begins with the local system's DNS resolver. If the

resolver has the IP address in its cache, the process ends. Otherwise, it queries the

DNS hierarchy.

iii. Recursive and Iterative Queries:

• The resolver typically performs a recursive query to the DNS servers.

• Recursive query means the resolver asks the question and expects a complete

answer, handling all the necessary intermediate steps in the DNS hierarchy.

• DNS servers, on the other hand, often use iterative queries, giving the best

information they have or referring the requester to another DNS server closer to

the answer.

iv. Authoritative Name Servers:

• DNS operates using authoritative name servers, which hold the official DNS

records for specific domains.

• When a DNS server receives a query for a domain it is not authoritative for, it

queries other authoritative servers in a chain, starting from the root servers, until it

reaches the server responsible for the domain in question.

v. Caching:

• DNS servers, including the resolver on your local system, often cache DNS records

for a certain period of time to speed up future queries and reduce the load on the

DNS infrastructure.

Key Functions and Benefits of DNS:

• Human-Readable Names: DNS enables users to access websites and services

using easy-to-remember domain names instead of numeric IP addresses.

• Load Distribution: DNS can be used to distribute network traffic across multiple

servers (load balancing) by associating multiple IP addresses with a single domain

name.

• Redundancy and Failover: DNS can be configured to provide redundancy and

failover by having multiple IP addresses associated with a domain, allowing traffic

to be redirected in case of server failures.

• Scalability: DNS scales well to accommodate the growing number of domain

names and the expanding Internet, making it an essential infrastructure component.

• Global Reach: DNS is a distributed system, making it accessible worldwide and

supporting the global nature of the Internet.

• Domain Management: DNS facilitates domain registration and management,

allowing organizations and individuals to control their online presence.

• Localization: DNS can be used for content localization, enabling organizations to

direct users to geographically closer servers based on their DNS resolution.

4. What do you mean by DOS (Distributed Operating System)? Briefly explain the

Monolithic and Microkernel architecture of operating system.

Distributed Operating System (DOS)

A Distributed Operating System is a type of operating system that runs on multiple

interconnected computers and enables them to work together as a single unified system.

The primary goal of a distributed operating system is to provide transparency and

coordination among the individual computers or nodes in the network, allowing them

to share resources, communicate, and collaborate effectively. In a distributed operating

system, users and applications often perceive the distributed infrastructure as a single

coherent entity, even though it consists of multiple separate nodes.

Key features of a Distributed Operating System:

• Resource Sharing: Distributed operating systems enable sharing of resources such

as files, printers, and computational power across the network.

• Transparency: Users and applications should not be aware of the distributed nature

of the system, experiencing it as a centralized environment.

• Communication: Nodes in the distributed system can communicate with each

other to exchange data and coordinate activities.

• Concurrency: Distributed operating systems handle concurrent execution of tasks

from multiple nodes.

• Scalability: The system can grow by adding more nodes, supporting an increasing

number of users and resources.

• Fault Tolerance: The system is designed to continue functioning even if some

nodes or components fail.

Monolithic Architecture:

The monolithic architecture is a traditional approach to designing operating systems,

where the entire operating system, including essential services, device drivers, file

systems, and application execution environments, is integrated into a single large

program. In a monolithic OS, all components share the same address space, and

interactions between modules are direct function calls. This tightly coupled design can

be efficient but can lead to challenges in terms of scalability, extensibility, and fault

isolation.

Key characteristics of a monolithic architecture:

• Tightly Integrated: All OS components are tightly interconnected in a single

codebase, making communication between modules efficient but increasing the

complexity of managing and maintaining the system.

• Efficient Communication: Direct function calls enable efficient communication

between components, which can lead to high performance in some scenarios.

• Lack of Modularity: Monolithic systems can be difficult to modify or extend since

changes in one component may require modifications to other parts of the system.

• Limited Isolation: A bug or failure in one part of the system can potentially affect

the entire system, leading to reduced fault tolerance.

• Difficulty in Portability: Monolithic systems can be challenging to port to new

hardware or architectures due to their tightly integrated nature.

Examples of monolithic operating systems include early versions of UNIX, MS-DOS,

and Linux before the development of more modular kernels.

Microkernel Architecture:

The microkernel architecture is a modern and modular approach to designing operating

systems, where the OS core (microkernel) provides only essential services like process

scheduling, inter-process communication (IPC), and basic memory management. Other

operating system services and device drivers are implemented as separate user-level or

"server" processes, running in their own address spaces. This design promotes

modularity, flexibility, and improved fault isolation.

Key characteristics of a microkernel architecture:

• Modularity: The microkernel approach separates essential OS functions from non-

essential services, leading to a more modular and extensible design.

• Isolation: By keeping most components in user mode, faults in one component are

less likely to affect other parts of the system, leading to improved fault tolerance.

• Dynamic Services: New services can be added or removed dynamically without

affecting the core OS functionality, providing flexibility and ease of customization.

• Portability: Microkernels are typically more portable, as the core functionality is

smaller and more focused, making it easier to adapt to new hardware platforms.

• Slower Communication: Since inter-process communication is used to interact

with services, performance overhead might be higher compared to the direct

function calls in monolithic designs.

Examples of microkernel-based operating systems include GNU Hurd, QNX, Minix 3,

and some modern variants of macOS and Windows.

5. Define Object Adapter. Explain the invocation methods in CORBA.

Object Adapter:

An Object Adapter is a design pattern used in software engineering, particularly in the

context of object-oriented systems, to enable objects with incompatible interfaces to

work together. The adapter acts as an intermediary that allows objects with different

interfaces to collaborate by converting the interface of one object into an interface

expected by another.

In simpler terms, an object adapter allows two or more classes that can't directly

communicate due to incompatible interfaces to interact with each other through an

additional adapter class, which handles the conversion of method calls and data between

the incompatible interfaces.

The Object Adapter pattern involves the following key components:

Target Interface: The interface that the client expects, typically defined by an abstract

class or an interface.

Adaptee: The class with the incompatible interface that the client cannot directly use.

Adapter: The class that implements the Target Interface and internally holds an

instance of the Adaptee. It translates method calls from the Target Interface to the

Adaptee's interface and vice versa.

The Object Adapter pattern is useful when you have existing classes with incompatible

interfaces, and you want to make them work together without modifying their source

code.

In CORBA (Common Object Request Broker Architecture), invocation refers to the

process of making remote procedure calls (RPCs) between distributed objects, allowing

objects to communicate transparently across different platforms and programming

languages. CORBA provides two primary invocation methods: dynamic invocation and

static invocation. These methods determine how clients interact with remote objects

and perform method calls.

Dynamic Invocation:

• In dynamic invocation, the client invokes methods on remote objects dynamically

at runtime without prior knowledge of the specific interfaces or methods of the

remote objects.

• The client uses the "Dynamic Invocation Interface" (DII) provided by CORBA,

which allows it to specify the method to be invoked, the target object, and the input

parameters at runtime.

• This method is especially useful when the client needs to interact with objects with

unknown or dynamically changing interfaces.

• Dynamic invocation provides flexibility but comes with a performance overhead

due to the dynamic nature of the method calls.

Static Invocation:

• In static invocation, the client invokes methods on remote objects using the specific

interface definitions generated from IDL (Interface Definition Language) during

compile-time.

• The client has prior knowledge of the remote object's interface, including the

method names, parameter types, and return types, which are defined in the IDL.

• This method is more efficient in terms of performance because the compiler

generates code that directly calls the remote methods based on the interface

definitions.

• Static invocation provides type safety and better performance but requires the client

to be aware of the remote object's interface at compile-time.

Both dynamic and static invocation methods have their use cases in CORBA-based

applications. Dynamic invocation is suitable when dealing with objects with dynamic

interfaces, while static invocation offers better performance and type safety when the

interface is known at compile-time. The choice between these methods depends on the

specific requirements of the application and the level of flexibility needed in handling

remote object interactions.

6. What is Network Time Protocol (NTP)? How Berkely minimizes the problems of

single time server failures of Chistian’s algorithm.

Network Time Protocol (NTP) is a protocol used to synchronize the clocks of computer

systems and network devices in a distributed computing environment. NTP ensures that

all the devices in a network have accurate and synchronized time, which is essential for

various applications that require time-sensitive operations, such as logging,

authentication, and coordinating distributed systems.

The primary purpose of NTP is to maintain accurate time across a network despite

factors such as network delays, clock drift, and the lack of a single centralized time

source. By ensuring that all devices in the network have a common understanding of

time, NTP helps prevent issues like data inconsistencies, authentication failures, and

coordination problems in distributed systems.

The Christian's algorithm (also known as the Christian-Allen algorithm) is a simple

algorithm for clock synchronization in distributed systems, proposed by Gerard J.

Holzmann in 1987. It is based on the idea of calculating the time offset between a client

and a time server, but it has some limitations, including vulnerability to single time

server failures. The Berkeley algorithm, on the other hand, is an improvement that

addresses this limitation. Here's how Berkeley minimizes the problems of single time

server failures in the context of clock synchronization:

The Berkeley Algorithm:

The Berkeley algorithm, named after the University of California, Berkeley, where it

was developed, introduces a hierarchical approach to clock synchronization. In this

algorithm, there is a centralized time coordinator, often referred to as the "time

daemon," that collects time information from multiple time servers and calculates a

“consensus” time that is distributed back to all the participating nodes in the system.

The key steps in the Berkeley algorithm are as follows:

• Time Server Pool: The system consists of a set of time servers distributed across

the network. Each time server maintains its local time.

• Time Offset Calculation: The time daemon periodically sends requests to the time

servers, asking them to report their local time. The time servers respond with their

current time.

• Time Consensus: The time daemon calculates the average (or a weighted average)

of the reported times from the time servers. This consensus time is considered the

most accurate time estimate for the system.

• Time Distribution: The time daemon distributes the consensus time back to all the

nodes in the system. Each node adjusts its local clock based on the difference

between its current time and the consensus time.

Advantages and Handling Failures:

The Berkeley algorithm has several advantages that help minimize the problems of

single time server failures:

• Redundancy: By using multiple time servers, the Berkeley algorithm increases

redundancy, making the system more robust in the face of individual server failures.

• Consensus Calculation: The consensus time is based on the average of multiple

time sources, reducing the impact of any single server's inaccurate time.

• Resilience: If a time server fails or becomes unreachable, the algorithm can still

function by relying on the other time servers. The failure of a single server does not

necessarily disrupt the entire system's time synchronization.

• Dynamic Adaptation: The Berkeley algorithm adapts to changes in the network

by periodically recalculating the consensus time and adjusting the local clocks of

the nodes. This helps the system recover from transient failures or changes in the

network topology.

7. What is the need of an election algorithm? Explain non token based Ricart-

Agrawala mutual exclusion algorithm along with an example.

An election algorithm is used in distributed systems to elect a leader or coordinator

among a group of nodes. In a distributed system, multiple nodes work together to

achieve a common goal. Having a leader or coordinator can help in organizing and

coordinating the activities of the nodes, improving efficiency and reducing conflicts.

Election algorithms ensure that only one node becomes the leader at a time, even if

nodes join or leave the system. This prevents the chaos that could arise from having

multiple nodes trying to act as leaders simultaneously.

Non-Token Based Ricart-Agrawala Mutual Exclusion Algorithm: The Ricart-Agrawala

algorithm is a mutual exclusion algorithm used in distributed systems to ensure that

only one node can access a critical section (a shared resource or section of code) at a

time, preventing race conditions and conflicts. In this algorithm, processes (nodes)

request permission to enter the critical section and must receive permission from all

other processes before entering. The non-token based version of the algorithm uses

request and reply messages to achieve this.

Algorithm Steps:

1. When a process wants to enter the critical section, it sends a request message to all

other processes.

2. Upon receiving a request message, a process checks if it is also trying to enter the

critical section. If not, it immediately sends a reply message back to the requesting

process. If the receiving process is also requesting access, it compares its own

timestamp (used to order requests) with that of the requesting process. The process

with the lower timestamp sends a reply; if timestamps are equal, process IDs are

used as tiebreakers.

3. The requesting process waits until it receives reply messages from all other

processes. Once all replies are received, it can enter the critical section.

4. After completing its critical section work, the process sends release messages to all

other processes, indicating that it is done and the critical section is now available.

Example: Let's consider a scenario with three processes: P1, P2, and P3. Each process

wants to enter a critical section to access a shared resource.

1. Process P2 requests access to the critical section and sends request messages to P1

and P3.

2. Process P1 receives the request from P2 and replies since it's not currently in its

critical section.

3. Process P3, however, is also requesting access to the critical section. It compares

timestamps and decides that P2's request should be replied to first.

4. P2 receives replies from both P1 and P3, allowing it to enter the critical section.

5. After finishing its work in the critical section, P2 sends release messages to P1 and

P3.

6. P1 and P3, upon receiving the release message from P2, know that the critical

section is available and can proceed.

This algorithm ensures that only one process can be in the critical section at a time,

even in a distributed environment where processes communicate asynchronously.

8. Differentiate between passive and active replication approach. Discuss with a

technique that make the distributed system highly available.

Differences between passive and active replication approach are:

Passive Replication Active Replication

Multiple replicas (copies) of a service or

data are created, but only one replica,

This involves distributing client requests

across multiple active replicas. All

known as the primary or active replica,

handles client requests and performs the

actual work.

replicas are actively processing requests

simultaneously

All client requests go to active replica Load balancing distributes client requests

Provides fault tolerance on failover Provides fault tolerance through

redundancy

Usecases: Web applications, data

processing, etc.

Usecases : Backup or standby systems,

data recovery

One technique to make a distributed system highly available is the use of Load

Balancing combined with Active Replication.

Load Balancing: Load balancing involves distributing incoming client requests across

multiple replicas to ensure that the workload is evenly distributed. This prevents any

single replica from being overwhelmed while others remain underutilized. Load

balancing improves resource utilization, reduces response times, and enhances the

overall system performance.

Active Replication with Load Balancing: In this scenario, multiple active replicas are

used to process client requests. Load balancing techniques are employed to distribute

incoming requests among these replicas. This not only improves performance by

allowing parallel processing but also provides fault tolerance. If one replica becomes

unavailable, the load balancer can redirect traffic to other available replicas.

Additionally, these active replicas can use consensus protocols like Paxos or Raft to

ensure consistency and agreement on the order of requests and responses.

Advantages of this approach:

1. High Availability: If one replica fails, others can continue to handle requests,

minimizing downtime.

2. Scalability: New replicas can be added to the system to handle increased load,

improving scalability.

3. Performance: Load balancing ensures efficient resource utilization and shorter

response times.

4. Redundancy: Multiple active replicas provide redundancy, reducing the risk of

data loss or service disruption.

A practical example of this approach can be seen in web applications that use active

replication and load balancing to handle user requests. When a user accesses a website,

their requests are distributed across multiple backend servers, which actively process

the requests. If one server fails, the load balancer routes traffic to the remaining

operational servers. Active replication ensures consistent data across these servers, and

load balancing optimizes resource usage and response times.

Overall, the combination of active replication and load balancing is a powerful

technique for creating highly available and efficient distributed systems.

9. Write down the rule of two-version locking. Explain how Optimistic concurrency

control mechanism works.

The Two-Version Locking Rule is a principle used in optimistic concurrency control

mechanisms to manage transactions and ensure data consistency in a multi-user

database environment. It revolves around the concept of maintaining two versions of

data: the current committed version and the updated version, which is modified by an

ongoing transaction. This approach allows multiple transactions to work on their own

copies of the data simultaneously, and conflicts are resolved when transactions attempt

to commit their changes.

Optimistic concurrency control (OCC) is a mechanism used to handle concurrent access

to data in a way that minimizes the need for explicit locking and allows transactions to

proceed in parallel as much as possible. The central idea is to allow transactions to

operate on data without acquiring locks and only resolve conflicts when attempting to

commit. Here's how the optimistic concurrency control mechanism works:

1. Read Phase:

• Transactions read data from the database without acquiring locks.

• The current committed version of the data is used as the starting point for each

transaction.

2. Validation Phase:

• When a transaction is ready to commit, it checks whether the data it read is still

consistent.

• It compares the current committed version of the data with the versions read

during the transaction's execution.

• If no other transaction has modified the same data in the meantime, the

transaction can proceed to commit.

3. Write Phase:

• If validation succeeds, the transaction applies its changes to the data and creates

a new version with the updated values.

• The new version is then made the current committed version for future

transactions.

Advantages of Optimistic Concurrency Control:

• Reduced Locking: Optimistic concurrency control reduces the need for locks,

minimizing contention and allowing better parallelism among transactions.

• Increased Throughput: Transactions can work independently on their copies of

data, resulting in higher throughput and reduced waiting times.

• Shorter Lock Duration: Locks are only acquired during the validation and commit

phases, leading to shorter lock durations and less blocking.

• Consistency: Conflicts are detected during validation, ensuring that only consistent

changes are committed.

• Lower Deadlock Risk: Since locks are acquired for a shorter period, the risk of

deadlocks is reduced.

10. How does triple modular redundancy works? Explain how reliable client server

communication can be achieved in distributed system.

Triple Modular Redundancy (TMR) is a fault-tolerant technique used to improve the

reliability of digital systems, especially in safety-critical applications. It involves

triplicating the hardware components and logic that execute a particular function and

then comparing the outputs of these three redundant modules. The system's response is

based on the majority output of the three modules, ensuring that even if one module

fails or produces incorrect results, the correct result can still be determined.

Here's how TMR works:

1. Triplication: The functional unit that needs redundancy is triplicated. This means

that there are three identical instances of the unit, labeled A, B, and C.

2. Operation: All three instances of the functional unit operate simultaneously on the

same input data.

3. Comparison: The outputs of the three instances are compared against each other.

If two outputs match, the majority result is considered correct. If all outputs match,

it's a clear indication of correctness. If there's a disagreement, the majority result is

chosen.

4. Output Selection: The system uses the majority result as the final output. If one

instance produces incorrect output due to a fault, the other two instances can correct

it.

Achieving reliable communication between clients and servers in a distributed system

is crucial for maintaining the integrity of data and providing consistent services. Here's

how this can be achieved:

1. Redundancy: Employ redundancy by deploying multiple server instances that

replicate data or services. This helps ensure continuous availability and fault

tolerance in case one server fails.

2. Load Balancing: Implement a load balancer to evenly distribute client requests

across multiple server instances. This not only improves performance but also

ensures that no single server is overwhelmed.

3. Error Handling: Implement comprehensive error handling mechanisms to detect

and recover from communication failures, timeouts, or server crashes. This might

involve retry mechanisms, timeouts, and failover strategies.

4. Data Replication: For critical data, consider using data replication techniques.

Replicate data across multiple servers in different geographical locations to provide

better fault tolerance and disaster recovery.

5. Monitoring and Health Checks: Continuously monitor the health of servers and

the communication infrastructure. Use automated health checks to identify and

isolate faulty components.

6. Backup and Recovery: Regularly back up data and maintain backup servers. In

case of a server failure, the backup servers can take over the workload to minimize

downtime.

7. Security Measures: Implement security measures to protect communication

channels and prevent unauthorized access or data breaches.

11. Write short notes on: (any two)

i) Lamport's clock:

Lamport, is a simple logical clock algorithm used in distributed systems to order events

and establish a partial ordering of events based on causality. Lamport's clock is a

fundamental concept in the field of distributed systems and helps maintain consistency

and coordination across different processes that may not have access to a global clock.

Lamport's clock assigns a unique timestamp to each event in a distributed system. The

concept is based on the idea that events that occur later in time will be assigned larger

timestamps. However, Lamport's clock doesn't necessarily provide real-time

information about the absolute time; it only provides a logical ordering of events.

The algorithm works as follows:

1. Event Occurrence: Whenever an event occurs in a process, its Lamport timestamp

is incremented by one. This timestamp represents the logical time at which the event

occurred in that process.

2. Event Communication: When a process sends a message to another process, it

includes its own Lamport timestamp in the message.

3. Event Reception: Upon receiving a message, the receiving process adjusts its own

Lamport timestamp to be the maximum of its current timestamp and the timestamp

received in the message, plus one.

iii) Feedback suppression mechanism in M-cast communication

Feedback suppression mechanisms are techniques used to mitigate or prevent the

propagation of feedback loops within the communication network. Feedback loops can

occur when multicast messages are sent to multiple recipients, and some of these

recipients inadvertently send responses or feedback messages that further propagate

through the network, causing unnecessary traffic and potential instability.

Feedback suppression mechanisms aim to maintain network stability, prevent

unnecessary bandwidth consumption, and ensure efficient multicast communication.

Here are a few common feedback suppression mechanisms used in multicast

communication:

1. Reverse Path Forwarding (RPF):

• RPF is a mechanism that checks the direction of incoming packets to ensure

they are arriving from the expected path (reverse path). If the packet arrives

from an unexpected path, it's considered a potential feedback loop and is

dropped.

• RPF helps in preventing loops by discarding packets that do not follow the

expected path from the source to the destination.

2. Pruning and State Maintenance:

• In multicast communication, routers maintain state information about active

multicast groups and their members.

• Pruning involves dynamically removing routers and links from a multicast tree

if no downstream members are interested in the multicast traffic.

• By pruning branches without active receivers, feedback loops caused by

unnecessary packet replication and propagation can be suppressed.

