
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

TRIBHUVAN UNIVERSITY 
 

INSTITUTE OF ENGINEERING 
 

THAPATHALI CAMPUS 
 
 
 

 

DS Assignment: 

 
 

2072 Old Questions 
 
 
 

 

Submitted By: 
 

Prabin Bohara (THA076BCT026) 

Prabin Sharma Poudel (THA076BCT027) 

Raj Kumar Dhakal (THA076BCT033) 

Sajjan Acharya (THA076BCT038) 
 
 
 

 

Submitted To: 
 

Department of Electronics and Computer Engineering 
 

Thapathali Campus 
 

Kathmandu, Nepal 

 
 
 

 

 July, 2023 



 

 

 

 

2072 Chaitra [Regular]  

 

 

 
 

 

Answers: 

 

Q. n. 1. Answer: 



S.N.  Centralized System Distributed System 

1.  Uses client/server architecture where one or 

more client nodes are directly connected to a 

central server. 

Utilizes computational resources across 

multiple, separate computation nodes to achieve 

a common, shared goal 

2.  Network resources are placed and managed 

from a main location, by administrators. 

Resources are on separate nodes, which need to 

be communicated and synchronized over a 

common network. 

3.  Characteristics: 

➢ Client clock needs to be synchronized 

with the global clock of the central 

server.  

➢ Central node failure causes the entire 

system to fail. 

Characteristics: 

➢ Lack of global clock, each node function 

according to its local clock. 

➢ Failure at one node still allows the 

functioning of the whole system. 

4.  Architecture: 

➢ Client-Server Architecture 

Architecture: 

➢ Peer to Peer 

➢ N-tier Architecture 

5.  Advantages: 

➢ Easy to physically secure. 

➢ Dedicated resources (memory, CPU 

cores, etc.) 

➢ Easy detachment of a node from the 

system. 

➢ More cost-efficient for small systems up 

to a certain limit. 

Advantages: 

➢ Distributed systems are highly scalable. 

➢ Fault tolerance 

➢ Distribution of heavy workloads 

➢ Reliable, Cost effective and improved 

system performance due to parallel 

processing.  

6.  Disadvantages: 

➢ Abrupt failure of entire system 

➢ Difficulty in server maintenance. 

➢ Lack of Transparency, Scalability and 

innovation.  

Disadvantages: 

➢ Difficult to achieve consensus. 

➢ Synchronization issues. 

➢ High development and maintenance cost. 

7.  Applications/Use cases: 

➢ Personal computing, Single-gaming. 

➢ Data Analysis 

Applications/Use cases: 

➢ Cluster computing, Grid computing. 

➢ Multi-player online games 



 

There are several design issues in distributed system, which are given below: 

 

1. Heterogeneity: 

• Distributed computers consist of many different sorts of networks, and their 

differences are masked by the fact that all the computers attached use Internet 

8.  Wikipedia. Consider a massive server to which 

we send our requests and the server responds 

with the article that we requested. Suppose we 

enter the search term ‘junk food’ in the 

Wikipedia search bar. This search term is sent as 

a request to the Wikipedia servers (mostly 

located in Virginia, U.S.A) which then responds 

back with the articles based on relevance. In this 

situation, we are the client node, Wikipedia 

servers are the central server. 

Example: Google search system. Each request is 

worked upon by hundreds of computers that 

crawl the web and return the relevant results. To 

the user, Google appears to be one system, but it 

actually is multiple computers working together 

to accomplish one single task (return the results 

to the search query). 



protocols to communicate. Computer on one network need an implementation of 

the IP for another network for it to communicate with the nodes of another network.  

• Data types such as integers are represented in different ways in different sorts of 

hardware. These differences must be dealt with if messages are to be exchanged 

between programs running on different hardware.  

• Even if an Operating system provides an implementation of the internet protocols, 

they may not provide the same API to these protocols. For example, the calls for 

message exchange in UNIX and Windows are different.  

• Different programming languages use different representation for characters and 

data structures. These differences also should be addressed. 

 Solutions: 

• Middleware such as CORBA: They deal with the differences in the OS and the 

hardware. They also provide uniform computational models used by programmers. 

• Mobile code: It’s a program code that can be transferred from one computer to 

another and run at the destination. Example: JAVA applets. 

• Virtual machines: They provide a way of making code executable on variety of host 

computers, as the compiler for a particular programming language generates code 

for a virtual machine instead of a particular hardware order code.  

2. Openness: 

• The openness means if the system can be extended or reimplemented by developers. 

Openness cannot be achieved unless the specifications and the documentation of 

the key software interfaces of the system is made available or published.  

• In distributed systems many components are engineered by different people, thus 

developers also have that challenges even after acquiring the published 

documentation.  

 Solution: 

• Requests for Comments (RFC) introduced by the designers of the internet 

protocols. This practice has continued and forms the basis for technical 

documentation to this day.  

3. Security: 

The challenge is to send a sensitive information over a network without any security issues. 

Security encapsulates 3 areas:  

• Confidentiality: Protection against disclosure to unauthorized individuals. 



• Integrity: Protection against alteration or corruption. 

• Availability: Protection against interference with the means to access the resources.  

 Solutions: 

• Firewall: Use of firewall can restrict the traffic that can enter and leave. But this 

doesn’t ensure the appropriate use of the resources by the user that is already in.  

• Encryption: Ensures 2 things- conceal the contents of the message, and correctly 

identify the recipient of the sensitive message.  

 Serious challenges with no optimum solutions: 

• Denial of Service Attacks: When the service is bombarded with pointless requests 

to make serious users unable to use it. 

• Fishy Mobile codes: Mobile codes need to be handled with care. For example, an 

executable program sent through an Email can have unpredictable consequences on 

the receiver’s PC when he/she tries to run it.  

4. Scalability: 

• Controlling the cost of the physical resources is difficult when scaling. It’s so 

especially because as the number of users increase, the unitarily scaled number of 

servers may not be enough to handle in practical scenarios due to bottleneck and 

latency. For example, if 1 server handles 20 users, 2 servers may not be able to 

handle 40 users! 

• Controlling the performance loss is difficult as the nodes are added. This is due to 

the performance bottleneck. Although hierarchical structures scale better than the 

linear algorithms, the time taken to access them is O(log n). 

• Preventing the software resources is a major challenge in the internet. The supply 

of the available internet address is running out. For this reason, a new version of 

protocol with 128-bit internet address is being adopted, and this will require 

modifications to many software components. But this will also bring out another 

challenge- larger internet addresses will occupy extra space in messages and in 

computer storage.  

• Avoiding the performance bottleneck is difficult to achieve.  

 Solution: 

• Decentralize the algorithms to avoid bottleneck in performance, 

• Data replication.  

• Associated techniques of caching in the located server computers.  



• Deployment of multiple servers.  

5. Failure handling: 

• Failures in distributed system are partial. Therefore, handling the failures might 

prove difficult.  

• To detect failures, checksum can be used, but that technique is not enough to detect 

other failures such as remote crashed server in the internet. The main challenge is 

to manage in the presence of failures that can’t be detected but are suspected.  

• Masking of failures may not be efficient every time as for the worst cases, the 

replicated disks can be corrupted too and the message may not get through the 

reasonable time however often it is retransmitted.  

• Roll back operation may cause incomplete operation and may need to be restarted 

again.  

 Solution: 

• Two different routes in minimum between any two routers in the internet. 

• Failure tolerance by informing users of the current failures can be helpful to not 

cause wastage of time of the users.  

• The servers can be designed so as to detect faults in their peers. The clients can be 

redirected to the remaining peers.  

6. Concurrency: 

• To achieve better throughput, services allow multiple client requests in parallel but 

this can cause inconsistency if not executed in managed concurrent threads.  

• The synchronization of clocks is done in some concurrency protocols such as 

Timestamp ordering protocol. But the synchronization itself is a very challenging 

task in itself.  

 Solution: 

• Any programmer who takes an implementation of an object that was not intended 

for use in distributed system must do what is necessary to include the concurrency 

tackling mechanism. 

• Use of Semaphores in OS. 

• Use of various concurrency control mechanisms such as 2PL, Timestamp Ordering 

protocol, multi-version control, 

• Use of Data segmentation and apply various concurrency techniques in different 

segments separately depending upon the nature of the data.  



• Employ hybrid concurrency control manager in the server. 

7. Transparency: 

Transparency is the concealment of resources that are not direct relevant to the task for 

users and application programmers.  ANSA defines 8 forms of transparency: 

• Access Transparency: 

➢ This refers to the illusion of accessing local and remote resources in a 

uniform manner, using identical operations. 

➢ API for files use the same operations to access both local and remote files. 

➢ Achieving it is difficult because hiding differences in resource location, data 

representation, and access mechanisms requires sophisticated middleware. 

• Location Transparency: 

➢ This involves concealing the actual location of resources from users and 

applications. 

➢ URLs are location transparent. (But not mobility transparent) 

➢ Location and Access Transparency are combinedly called as Network 

Transparency.  

➢ Ensuring location transparency is challenging because it demands 

mechanisms that can manage and resolve the dynamic changes in resource 

locations. 

• Migration (Mobility) Transparency: 

➢ This form of transparency allows resources to be moved without affecting 

ongoing computations. 

➢ Achieving migration transparency is complex due to the need for 

maintaining consistent states across distributed nodes during resource 

movement. 

• Replication Transparency: 

➢ This involves providing multiple copies of resources while concealing the 

presence of duplicates. 

➢ In case of mobile phone call, the caller is a client and the callee is called to 

be a resource. In this example, the 2 users are making a call unaware of the 

mobility of their phones between calls.  

➢ Achieving replication transparency is difficult due to the need for 

synchronization and consistency maintenance among replicas. 



• Concurrency Transparency: 

➢ Concurrency transparency ensures that multiple users can access and 

modify resources simultaneously without conflicts. 

➢ It's challenging because handling concurrent access, ensuring data 

consistency, and avoiding race conditions require complex synchronization 

mechanisms. 

• Failure Transparency: 

➢ This form of transparency conceals failures in the system from users and 

applications. 

➢ The electronic mails are eventually delivered even if there is a failure at the 

time of delivery. The faults are masked by attempting to retransmit the 

messages until they are successfully delivered. 

➢ Ensuring failure transparency is challenging due to the need for fault 

detection, fault tolerance mechanisms, and graceful degradation. 

• Performance Transparency: 

➢ Performance transparency hides variations in performance caused by 

changes in load and resource availability. 

➢ Achieving performance transparency is difficult because it requires efficient 

load balancing, resource monitoring, and dynamic adaptation mechanisms. 

• Scaling transparency: 

➢ Hiding the complexities of system scaling from users and applications. 

➢ Ensuring seamless expansion or contraction of resources while maintaining 

performance and availability is challenging. 

8. Quality of Service: 

QoS (Quality of Service) captures the following aspects, and the reasons for the difficulty 

in achieving them are also written below: 

• Reliability and Availability: 

➢ Ensuring consistent and reliable access to resources across distributed nodes 

is complex. 

➢ Difficult to achieve due to potential network failures, node crashes, and 

varying communication latencies. 

• Response Time: 



➢ Providing predictable response times for user requests across distributed 

components is a challenge. 

➢ Challenging to achieve due to network congestion, resource contention, and 

varying processing speeds. 

• Bandwidth Management: 

➢ Allocating and managing network bandwidth fairly among competing 

applications is difficult. 

➢ Achieving fairness is complex due to dynamic traffic patterns, varying data 

sizes, and diverse application requirements. 

• Prioritization: 

➢ Assigning appropriate priorities to different applications and users based on 

their needs is complex. 

➢ Difficult to achieve due to conflicts between high-priority and low-priority 

tasks during peak loads. 

• Resource Reservation: 

➢ Reserving resources to meet specific QoS requirements for critical 

applications is challenging. 

➢ Challenging due to contention for resources and the need to guarantee 

reserved capacity. 

• Adaptability: 

➢ Adapting to changing network conditions and adjusting QoS parameters 

dynamically is difficult. 

➢ Achieving dynamic adaptation is complex due to the need for real-time 

monitoring and decision-making. 

• Security and QoS Trade-offs: 

➢ Balancing the need for stringent security measures with maintaining desired 

QoS levels is challenging. 

➢ Difficult due to potential overhead introduced by security protocols and 

potential impact on performance. 

 

Q. n. 2. Answer: 

The importance of DFS (Distributed File System) are: 



• Scaling: DFS allows storage and retrieval of files across multiple servers, enabling 

seamless scaling of storage capacity to accommodate growing data needs. 

• Fault tolerance: DFS replicates files across distributed nodes, ensuring data 

availability even if a server or node fails, enhancing system reliability. 

• Redundancy: By storing multiple copies of files, DFS ensures data redundancy, 

minimizing the risk of data loss due to hardware failures or disasters. 

• Load balancing: DFS distributes file requests across servers, preventing resource 

overload and optimizing performance by balancing the system's load. 

• Collaboration and Accessibility: DFS provides a centralized point of access to files, 

facilitating collaboration among geographically dispersed users while maintaining 

consistent file versions. 

• Data Integrity: Through replication and data consistency mechanisms, DFS 

safeguards against data corruption, ensuring the accuracy and reliability of stored 

information. 

 

Operation: 

• SUNNFS operates in a client-server architecture where clients request file operations and 

servers provide file services.  

• File access request: Clients initiate file access requests such as read, write, and execute 

through system calls. 

• Mounting: Clients use the ‘mount’ command to establish a connection to the NFS server 

and mount remote directories as if they were local. 



• Clients send RPCs to the server using the appropriate protocol to request file operations. 

• A unique file handle representing the file's attributes and location is used to identify files 

on the server. 

• SUNNFS employs a caching mechanism on the client side to store frequently accessed 

data, reducing the need for repeated server requests. The client caches file attributes like 

size and modification time to minimize attribute retrieval calls to the server. Caching data 

in the client's memory enhances read performance by avoiding repetitive data transfer from 

the server. 

• SUNNFS implements coherency mechanisms to ensure data consistency between the 

client's cache and the server. 

• When a client modifies a cached file, it marks the data as "dirty". The server is notified to 

invalidate other clients' caches and update its own copy. 

• Write operations are buffered in the client's cache before being written to the server, 

enhancing write efficiency. 

• Servers maintain statelessness, treating each request independently, which simplifies 

server design and enables easier fault tolerance. 

• Clients and applications interact with remote files as if they were local, thanks to the 

transparency of the NFS protocol. 

 

The properties of SUNNFS are: 

• Transparency: SUNNFS provides network transparency, allowing clients to access remote 

files as if they were local. For example, a user can manipulate a file on a remote server just 

like a local file. 

• Location Independence: Clients can access files on remote servers regardless of their 

physical location. This property enables seamless file access across geographically 

distributed systems. 

• Heterogeneity: SUNNFS supports heterogeneous environments, allowing clients and 

servers to have different operating systems and hardware architectures. For instance, a 

client running on Linux can access files on a server running Windows. 

• Concurrent Access: Multiple clients can access the same file simultaneously without 

conflicts. For example, several users can read and edit a shared document concurrently. 



• Caching Mechanism: SUNNFS employs caching to store frequently accessed data on the 

client side. For instance, a client can cache a file's contents, reducing the need for repeated 

server requests. 

• Statelessness: Servers maintain statelessness, treating each request independently. This 

property simplifies server design and enhances fault tolerance. For instance, a server can 

serve multiple clients without keeping track of their individual states. 

• Remote Procedure Calls (RPCs): SUNNFS utilizes RPCs to enable communication 

between clients and servers. Clients invoke remote procedures on servers to perform file 

operations, such as reading or writing. 

• File Handle Mechanism: A file handle uniquely identifies files on the server. Clients use 

this handle to reference files. For example, a client uses a file handle to perform read 

operations on a specific file. 

• Coherency Mechanisms: SUNNFS ensures data consistency through coherency 

mechanisms. When a client modifies a file, it informs the server to invalidate other clients' 

caches, maintaining data integrity. 

• Asynchronous Write: Clients can perform asynchronous writes, where data is first stored 

in the client's cache and then written to the server. This enhances write efficiency and 

reduces network overhead. 

 

Q. n. 3. Answer: 

 



Explanation: 

• JAVA RMI extends the JAVA object model to provide support for distributed objects 

in the JAVA language. It allows objects to invoke methods on remote objects using the 

same syntax for local invocation, thus capturing the design goal/challenge of ‘Access 

Transparency’. However, the object making the remote invocation is aware that its 

target is remote and not local because it must handle ‘Remote Exceptions’. Similarly 

the implementor of remote object is also aware because it must handle ‘Remote 

Interface’. 

• The stub is an object, acts as a gateway for the client side. All the outgoing requests are 

routed through it. It resides at the client side and represents the remote object. It does 

the following: 

➢ It initiates a connection with remote Virtual Machine (JVM), 

➢ It writes and transmits (marshals) the parameters to the remote Virtual Machine 

(JVM), 

➢ It waits for the result 

➢ It reads (unmarshals) the return value or exception, and 

➢ It finally, returns the value to the caller. 

• The skeleton is an object, acts as a gateway for the server side object. All the incoming 

requests are routed through it. When the skeleton receives the incoming request, it does 

the following tasks: 

➢ It reads the parameter for the remote method 

➢ It invokes the method on the actual remote object, and 

➢ It writes and transmits (marshals) the result to the caller. 

• Before sending method calls over the network, parameters are marshalled (converted 

to a transferable format). On the server, unmarshalling converts parameters back to 

their original form. 

• Objects sent across the network must be serializable, meaning they can be converted 

into a byte stream for transmission. 

• RMI provides security checks through the Java Security Manager, ensuring safe 

communication between distributed components. 

• Remote methods can throw exceptions. RMI transparently handles remote exception 

propagation and rethrows them on the client side. 

 



RMI is superior to RPC (Remote Procedure Call) because of the following: 

• Efficiency in object-oriented approach: RMI's object-oriented nature aligns with 

modern programming paradigms, allowing developers to work directly with objects. 

This reduces the need for data conversions and streamlines the communication process 

by sending and receiving whole objects. In RPC, working with objects requires manual 

serialization and deserialization, increasing complexity and potential errors. RMI can 

pass complex objects as parameters, reducing the need to serialize and deserialize data 

manually, as often required in RPC. 

• Passsing complex objects: RMI's capability to transmit complex objects as parameters 

simplifies the communication process. When passing intricate data structures or 

entities, RMI avoids the need to break down data into smaller units for transmission, 

reducing the overhead and improving efficiency. RPC often struggles with complex 

data types, leading to additional effort in handling data fragmentation and 

reconstruction.  

• Pass by reference and by value: RMI's support for both pass by value and reference is 

a significant efficiency gain. By passing parameters by reference, RMI enables remote 

objects to share data without the necessity of full data transfer, enhancing 

communication speed and reducing network load. RPC, which primarily employs pass 

by value, often incurs redundant data transmission and processing. 

• Reduced overheads: RMI's design is tailored to modern programming practices, 

resulting in a more streamlined communication protocol. This reduced overhead 

translates to faster data transmission, quicker method invocations, and minimized 

computational burden on both the client and server sides. RPC's older design may 

generate more protocol overhead, leading to slower communication. 

 

Q. n. 4. Answer: 

The role of middleware in DS are: 

• Middleware acts as an abstraction layer between applications and underlying hardware 

and network complexities. It shields applications from low-level details, making 

development and maintenance easier. 

• Middleware enables different software components developed in various languages or 

running on different platforms to work together. It ensures compatibility and data 

exchange. 



• Middleware provides security mechanisms like encryption and authentication, 

safeguarding data and interactions in distributed environments. Examples include 

SSL/TLS for secure communication. 

• Middleware incorporates error detection, handling, and recovery mechanisms. It 

ensures systems continue to operate even in the presence of failures. 

• Examples of middleware include message-oriented middleware (MOM) like Apache 

Kafka, remote procedure call (RPC) frameworks like gRPC, and web service 

middleware like Java EE. 

 

CORBA stands for Common Object Request Broker Architecture. It is a framework that enables 

software components (objects) to communicate and interact across networks, even if they are 

developed in different languages or run on different platforms. It acts as middleware, providing a 

standardized way for these distributed objects to locate each other, invoke methods, and exchange 

data transparently.  

The following points further describes the CORBA: 



• CORBA allows objects developed in various programming languages (like Java, C++, 

Python) to seamlessly communicate, thanks to its Interface Definition Language (IDL). 

IDL abstracts the communication details. 

• The heart of CORBA is the Object Request Broker (ORB), which manages object 

communication. It handles locating objects, method invocations, parameter passing, and 

data serialization. 

• CORBA fosters interoperability by enabling objects running on different hardware and 

software platforms to collaborate, as long as they adhere to the CORBA specifications. 

• Developers define object interfaces using IDL, a neutral language. The IDL compiler then 

generates language-specific stubs and skeletons, facilitating communication. 

• A client invokes a method on a remote object as if it were a local call. The request goes 

through the ORB, which manages data transformation and ensures seamless 

communication. 

• CORBA provides location transparency, meaning clients don't need to know where remote 

objects reside. The ORB takes care of locating them, regardless of their physical location. 

• Objects can invoke methods on other objects dynamically, without needing to know their 

specific interfaces in advance. This fosters adaptability and flexibility. 

• CORBA offers security features and supports additional services like transactions, naming, 

and event notifications, enhancing the reliability and capabilities of distributed systems. 

Various vendors provide CORBA implementations, like OMG's TAO, Java's JavaIDL, and 

ORBacus. These frameworks make it easier to develop and deploy CORBA-based applications. 

Despite its benefits, CORBA may involve complexity due to its initial learning curve and 

integration challenges between different programming languages and platforms. CORBA 

revolutionized distributed computing by providing a standardized, language-independent way for 

objects to interact across networks.  

 

There are various CORBA services. They are given below: 

 Naming Service: 

✓ Role: Provides a directory service, allowing objects to be registered and located by 

name. Enables clients to find objects without knowing their physical locations. 

✓ Object's reference is registered with a name, and clients use the name to locate the 

object. Example: CORBA Naming Service. 

 Event Service: 



✓ Role: Facilitates event-driven communication between objects. Enables 

asynchronous communication, where an object notifies others about changes or 

events. 

✓ Example: A weather monitoring system sending notifications to registered clients 

when temperature exceeds a threshold. 

 Life Cycle Service: 

✓ Role: Manages object creation, deletion, and activation. Ensures objects are 

properly managed during their lifecycle. 

✓ Example: An object requesting activation when needed and deactivation when idle 

to optimize resource utilization. 

 Trading Service: 

✓ Role: Allows clients to discover services available in the network dynamically. 

Enables service providers to register and clients to find suitable services. 

✓ Example: A client searching for available printers in a network and choosing the 

most suitable one. 

 Query Service: 

✓ Role: Enables clients to query objects for their capabilities and features before 

invoking methods. Facilitates dynamic adaptation based on object capabilities. 

✓ Example: A client queries a printer object for supported print formats before 

sending a print job. 

 Concurrency Control Service: 

✓ Role: Manages concurrent access to shared resources in a distributed environment, 

ensuring data consistency and preventing conflicts. 

✓ Example: Ensuring that multiple clients can access and modify a shared document 

without conflicting changes. 

• Externalization Service: 

✓ Role: Converts object data into a transportable format for transmission across 

networks and vice versa. Handles data serialization and deserialization. 

✓ Example: Converting a complex object into a byte stream for network transmission 

and reconstructing it on the receiving side. 

• Transaction Service: 

 



✓ Role: Ensures data integrity by supporting distributed transactions with ACID 

properties (Atomicity, Consistency, Isolation, Durability). 

✓ Example: Ensuring that funds are transferred accurately between accounts across 

distributed banking systems. 

• Notification Service: 

✓ Role: Enables objects to send notifications about specific events to registered 

listeners, enhancing event-driven communication. 

✓ Example: Notifying subscribers when a stock price reaches a predefined level in a 

distributed stock trading system. 

• Security Service: 

✓ Role: Provides mechanisms for securing communication and data exchange among 

distributed objects, ensuring confidentiality and integrity. 

✓ Example: Encrypting data transmitted between a client and a server to prevent 

unauthorized access. 

• Concurrency Control Service: 

✓ Role: Manages concurrent access to shared resources in a distributed environment, 

ensuring data consistency and preventing conflicts. 

✓ Example: Ensuring that multiple clients can access and modify a shared document 

without conflicting changes. 

 

Q. n. 5. Answer: 

S.N. Physical Clock Logical Clock 

1.  Measures the progression of 

time. For example, Wall 

clock, wristwatch, system 

clock in a computer. 

It’s a component for catching 

sequential and causal 

connections in a dispersed 

framework. It is a software 

counter. For example, 

Lamport's logical clock, 

vector clock. 

2.  Since, different computers 

have different crystals that 

run at different rates, the 

Achieves ordering of events 

but not tied to real-time. It 

assign time stamps to the 

events. 



physical clock gradually get 

out of synchronization. 

3.  Each computer timestamps 

messages using its local 

clock. B receives A's 

message, but due to network 

delay, its timestamp may not 

accurately reflect the event's 

actual order. 

Each event (message 

transmission) gets a logical 

timestamp. B's message to C 

is assigned a higher logical 

timestamp than the message 

from A, reflecting the causal 

relationship accurately 

despite network delays. 

4.  The methods of 

synchornization are: 

1. Christian's method 

2. Berkeley's method 

3. Network time protocol 

The two widely used 

algorithms are: 

1. Lamport’s Clock 

2. Vector’s Clock 

 

The physical clocks ae difficult to synchronize due to the following reasons: 

• Hardware Variations: Hardware components like quartz crystals have inherent variations 

affecting clock accuracy. 

• External Factors: Temperature changes, electromagnetic interference, and other 

environmental factors impact clock speed. 

• Network Latency: Synchronizing over a network introduces delays, leading to inconsistent 

clock readings. 

• Clock Drift: Even if initially synchronized, clocks may drift apart due to minute differences 

in their internal mechanisms. 

 

Network Time Protocol (NTP) is a widely used method for synchronizing physical clocks in 

distributed systems. It defines an architecture to enable clients, across the Internet to be 

synchronized accurately to UTC. NTP employs a client-server model. Clients request time 

information from one or more NTP servers, which are known to have accurate time references.  



 

Server synchronization can be done in following ways: 

• Multicast mode: 

- Servers periodically multicasts time to other servers in the network. 

- Receivers set their clock assuming small delay. 

• Procedure Call mode: 

- One server accepts requests from other computers. 

- Server replies with its timestamp. 

• Symmetric mode: 

 - A pair of servers on higher subnet layers exchange messages to improve accuracy of 

synchronization over time. 

The following points further describes this method: 

• Timestamp Exchange: Clients periodically send requests to NTP servers for timestamp 

information. Servers respond with their current time, including any time offset. 

• Clock Adjustment: The client calculates the time offset between its clock and the server's 

clock based on round-trip time. It adjusts its clock to minimize the time difference. 

• Multiple Servers: To enhance accuracy and reliability, clients can query multiple NTP 

servers. They calculate an average offset from these responses, reducing the impact of 

network delays. 



• Stratum Hierarchy: NTP servers are organized in a hierarchical structure with different 

strata (levels). Stratum 1 servers have direct access to highly accurate time sources like 

atomic clocks. Lower stratum numbers represent higher accuracy. 

• Algorithm Complexity: NTP employs complex algorithms, including filtering, smoothing, 

and weighted averaging to ensure accurate time synchronization while accounting for 

potential anomalies. 

• Security Measures: NTP includes security measures like authentication to prevent 

unauthorized time sources and malicious clock manipulations. 

• Continuous Adjustment: NTP continually adjusts the local clock's rate to minimize the 

error and maintain synchronization over time. 

• Widely Used: NTP is used across the internet, local networks, and critical systems to 

maintain accurate time references for various applications. 

• Challenges: Despite its effectiveness, NTP can face challenges due to network delays, 

server reliability, and the complexity of algorithms. Stratum 1 servers are essential for 

maintaining high accuracy. 

 

Q.n. 6. Answer: 

The requirements are: 

• Exclusion: Only one process should have access to a shared resource at a given time 

• No Process Starvation: Every process requesting the resource eventually gets access. 

• Fairness: The order of process access should not be biased; processes should have an equal 

chance to access the resource. 

• No Assumptions: The algorithm should not assume particular properties like process speed, 

message delay, or system size. 

• Progress: If no process is in its critical section and some processes want to enter, the 

selection of the process that can enter next should not be postponed indefinitely. 

• Deadlock Freedom: The system should not deadlock, where processes are stuck 

indefinitely waiting for resources. 

 

Non-token based algorithm: Center coordinator algorithm 



 

Steps: 

a. To enter a CS a process sends a requests message to coordinator work while waiting 

for a reply. During this waiting period the process can continue with other work. 

b. The reply from coordinator gives right to access critical section based on request 

queue. 

c. After finishing critical section operation, the process notifies coordinator witrh a 

release messages. 

Advantages: 

a. Easy to implement 

b. Require only 3 message per access to critical section. 

Disadvantages: 

a. The coordinator can become a performance bottleneck. 

b. The coordinator is a critical point of failure. It it crashed a new one must be created. 

An election algorithm can be run to choose one.  

S.N.  Non-token based Algorithm  Token-Based Algorithm 

1.  No token circulation; processes request 

access directly. Generally simpler 

implementation without token 

management. 

Token circulates among processes to grant 

access. 

Often involves more complex token 

management logic. 



2.  Higher message overhead due to 

broadcasting requests. 

Lower message overhead due to linear 

token path. 

3.   Less predictable access pattern, as it 

depends on request arrival and 

acknowledgments. 

More predictable access pattern as token 

enforces order. 

4.  Non-token algorithms are useful for 

dynamic resource access scenarios. 

Token-based algorithms are suitable for 

systems with fixed resource access 

sequences. 

5.  Ricart-Agrawala Algorithm, Eisenberg-

McGuire Algorithm, etc. 

Distributed Token Ring Algorithm, 

Raymond's Tree-Based Algorithm, etc. 

 

Q. n. 7. Answer: 

The needs of replication are: 

• Performance Enhancement: 

✓ Reduced Load on Servers: Replicating data across multiple servers distributes 

client requests, reducing the load on individual servers and improving response 

times. 

✓ Localized Data Access: Replicas can be placed closer to clients, minimizing 

network latency and accelerating data access. 

✓ Parallel Processing: Replication allows multiple servers to work in parallel, 

enhancing throughput for data-intensive operations. 

✓ Load Balancing: Requests are evenly distributed among replicas, achieving load 

balancing and preventing server bottlenecks. 

✓ Caching Benefits: Frequently accessed data can be cached in replicas, decreasing 

the need to fetch data from remote servers. 

• Increased Availability: 

✓ Fault Detection and Recovery: If a replica fails, clients can switch to another 

replica, ensuring uninterrupted access to data. 

✓ Improved Redundancy: Replicas act as backups; if one replica is unavailable, 

clients can access others. 

✓ Isolation from Network Failures: Replicas can be placed on different network 

segments, reducing the impact of network failures. 



✓ Enhanced Scalability: Additional replicas can be added to accommodate growing 

user demands without affecting availability. 

✓ Geographic Distribution: Replicas located in different geographical regions offer 

continuous access, even in the presence of regional outages. 

• Fault Tolerance: 

✓ Data Recovery: If a replica fails, data can be retrieved from other replicas, 

minimizing the risk of data loss. 

✓ Automatic Failover: In case of a primary server failure, clients can automatically 

switch to secondary replicas, ensuring uninterrupted service. 

✓ Rollback and Consistency: Replication combined with logging allows for recovery 

to a consistent state after a failure. 

✓ Distributed Error Detection: Discrepancies between replicas can be detected and 

resolved to maintain data consistency. 

✓ Data Durability: Replicas provide redundancy, safeguarding data against server 

crashes and ensuring data persistence. 

In active replication, the replica managers are state machines. Active replication is a replication 

technique in distributed systems where multiple copies (replicas) of data or services are 

maintained, and all replicas actively process incoming requests from clients. This approach ensures 

that clients' requests are executed by all replicas in parallel, and the results are compared for 

consistency before being returned to the client. Active replication enhances fault tolerance and 

availability by allowing the system to continue functioning even if some replicas fail. 

 

 

 

 



In active replication, the sequence of events involves parallel processing of client requests across 

multiple replicas while ensuring consistency. Here's the sequence: 

• Client Request: A client sends a request to a primary replica, initiating the operation. 

• Request Forwarding: The primary replica forwards the request to all other replicas in the 

system. 

• Parallel Execution: Each replica independently executes the request concurrently with 

other replicas. 

• Result Comparison: The results produced by each replica are compared to identify any 

discrepancies. 

• Consensus Decision: A consensus algorithm (e.g., majority voting) determines the correct 

result based on replica responses. 

• Result Validation: The primary replica validates the consensus result against its own 

execution. 

• Response to Client: The primary replica responds to the client with the validated result. 

• Data Synchronization: Replicas synchronize their state periodically to ensure consistency 

and fault tolerance. 

The advantages of active replication are: 

➢ High Fault Tolerance: Active replication provides enhanced fault tolerance, as the system 

can still function even if a subset of replicas fails. 

➢ Increased Availability: Clients can direct their requests to any replica, ensuring that the 

service remains available even if certain replicas are inaccessible. 

➢ Low Latency: With requests processed in parallel by multiple replicas, clients can 

experience lower latency as the system responds faster. 

➢ High Reliability: The redundancy of replicas ensures that even if one or more replicas 

produce incorrect results, the correct result can be determined based on a majority vote. 

The disadvantages of active replication are: 

➢ Increased Communication Overhead: Coordinating and comparing results from multiple 

replicas introduces additional communication overhead, potentially affecting system 

performance. 

➢ Complexity: Active replication systems require sophisticated mechanisms for 

synchronizing and comparing results, leading to increased system complexity. 

➢ Consistency Challenges: Ensuring consistency among replicas can be challenging, 

especially in the presence of network delays, failures, and varying execution speeds. 



➢ Limited Scalability: As the number of replicas increases, the coordination and 

communication overhead can limit the scalability of active replication systems. 

 

Q. n. 8. Answer: 

A nested transaction is a transaction that is initiated within the scope of another transaction. It 

forms a hierarchy where the outer transaction is called the parent transaction, and the inner 

transaction is called the child transaction. Each nested transaction is treated as a unit of work, and 

it can either commit or abort independently of its parent transaction. 

 

Advantages of Nested Transaction: 

✓ Modularization and Isolation: Nested transactions allow breaking down complex 

operations into smaller, manageable units, enhancing code modularity and reducing 

complexity. Each nested transaction operates in isolation, providing a clear separation of 

concerns. 

✓ Atomicity and Consistency: Nested transactions inherit the properties of atomicity and 

consistency from their parent transaction. If an inner transaction fails, the parent transaction 

can be rolled back to a consistent state, ensuring data integrity. 

 

Optimistic concurrency control is a technique used in distributed systems to manage concurrent 

access to shared data by allowing transactions to proceed without immediate locking. Instead of 

preventing access, it permits transactions to proceed with the assumption that conflicts will be 

minimal. It performs conflict detection and resolution during the transaction's commit phase. 

The process flow is: 

➢ Read Phase: Transactions read the data they need without acquiring locks. They keep a 

copy of the read data and record a version number (timestamp or sequence number) 



➢ Execution Phase: Transactions perform their operations without any locking, assuming no 

conflicts will arise. 

➢ Validation Phase: During commit, transactions verify if the data they've read and modified 

is still consistent with the current state of the system. This involves checking for conflicts 

with other concurrent transactions. 

➢ Commit Phase: If no conflicts are detected during validation, the transaction commits its 

changes. If conflicts are detected, the transaction is aborted, and the process is restarted. 

 

Example: 

Consider two transactions, T1 and T2, operating concurrently: 

 T1 reads data (A=100) and plans to increment it by 20. 

 T2 reads the same data (A=100) and plans to increment it by 30. 

Both transactions operate optimistically, assuming there won't be any conflicts. During validation, 

the system detects that both T1 and T2 have modified the same data. Since the modifications 

conflict, one of the transactions (say, T2) is chosen to be aborted. T2 is restarted with the latest 

data, ensuring consistency. 

Advantages: 

➢ Reduced Lock Contention: Optimistic concurrency control minimizes lock contention, 

allowing transactions to proceed without waiting for locks. 

➢ Higher Throughput: As transactions don't wait for locks, the system can achieve higher 

throughput and better utilization. 

 

Q.n. 9. Answer: 

Distributed OS (short notes): 



A Distributed Operating System (DOS) is designed to manage and coordinate the resources and 

activities of a distributed computer system, where multiple interconnected computers work 

together as a unified computing environment.  

 

The following points capture the necessary notes or information on Distributed OS (DOS): 

• Transparency: DOS aims to provide transparency to users and applications, hiding the 

complexities of the underlying distributed infrastructure.Transparency types include 

access, location, migration, relocation, replication, concurrency, failure, and scaling 

transparency. 

• Communication: Communication mechanisms are crucial in DOS to enable seamless 

interaction among distributed components. Remote Procedure Call (RPC), message 

passing, and sockets are commonly used communication models. 

• Naming and directory service: DOS provides naming services that allow users and 

applications to access remote resources using human-readable names rather than numerical 

addresses. Distributed directory services help locate resources in a network using a 

directory structure. 

• Security: Security mechanisms in DOS ensure data confidentiality, integrity, 

authentication, and authorization across a distributed environment. Techniques like 

encryption, access control, and firewalls are used to enhance security. 

• Process management: DOS manages processes across multiple machines, providing 

features like process creation, migration, synchronization, and communication. Distributed 

scheduling algorithms balance load and optimize resource utilization. 



• Memory management: Distributed memory management involves managing memory 

across different machines to efficiently store and access data. Techniques like remote 

memory access and caching enhance memory management. 

• File System: DOS supports distributed file systems that provide a unified view of files 

distributed across the network. Features include file sharing, replication, caching, and 

consistency maintenance. 

• Fault tolerance: DOS employs fault tolerance techniques to ensure system reliability 

despite component failures. Redundancy, error detection, recovery, and replication are 

used to manage failures. 

• Real- time scalable system: DOS may support real-time systems, which require timely 

responses to events with strict deadlines. Real-time scheduling and communication 

mechanisms are crucial in such scenarios. DOS is designed to scale horizontally (adding 

more machines) and vertically (adding more resources to a machine) to accommodate 

growing workloads. 

 

JINI (Short notes): 

Jini, also called Apache River, is a distributed computing technology that aims to simplify the 

development and deployment of networked services and devices. It allows devices and services to 

dynamically join and leave a network, providing a flexible and adaptable distributed environment. 

 



The following points further describe JINI: 

• Dyanmic Federation: Jini enables devices and services to join or leave a network 

dynamically without complex configuration or administration. This supports the creation 

of ad-hoc networks and simplifies resource discovery. 

• Service Oriented Architecture: Jini is based on a service-oriented architecture where 

devices and services expose their capabilities as services. Clients can discover and use 

these services through a standardized interface. 

• Lookup services: Jini uses lookup services to facilitate service discovery. Devices and 

services register themselves with a lookup service, and clients can find and use these 

services through the lookup service. 

• Service Interfaces: Jini services expose their capabilities through standardized interfaces, 

known as service interfaces. Clients use these interfaces to interact with services. Service 

discovery involves finding available services in the network. 

• Leasing and Renewal: Jini introduces the concept of leasing, where clients lease resources 

for a specific duration. Clients need to renew their leases periodically to continue using the 

resources. If a client fails to renew, the resource is released. 

• Transaction: Jini supports distributed transactions and provides mechanisms for 

coordinating transactions across multiple services. It also includes persistence support, 

allowing stateful services to store their state reliably. 

• Network and Code Mobility: Jini's dynamic federation and service discovery capabilities 

enable network mobility, where devices and services can move across different networks 

seamlessly. Jini supports code mobility, where code can be dynamically downloaded to 

clients or services when needed. 

• Collaboration and Flexibility: Jini encourages collaboration between devices and services, 

promoting the creation of flexible and adaptable distributed systems. 
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Q. No. 1. Answer: 

A distributed system refers to a collection of independent computers or nodes that work together as a 

single coherent system to achieve a common goal. In a distributed system, components are located on 

different machines and communicate and coordinate their actions through a network. This architecture is 

commonly used to improve performance, scalability, fault tolerance, and resource utilization. Distributed 

systems are prevalent in various applications, including cloud computing, large-scale data processing, 

content delivery networks, and more. 

Challenges of Distributed Systems: 

i. Network Communication: Since components in a distributed system communicate over a 

network, network latency, bandwidth limitations, and potential network failures can significantly 

impact system performance and responsiveness. For example, in a distributed database system, 

slow network communication might result in delayed data retrieval and updates. 

ii. Concurrency and Synchronization: Multiple components may attempt to access shared resources 

concurrently. Ensuring data consistency and avoiding race conditions require sophisticated 

synchronization mechanisms. In distributed systems, managing synchronization becomes complex 

due to the lack of a shared memory space. For instance, in a distributed file system, multiple users 

might attempt to modify the same file simultaneously. 

iii. Fault Tolerance: Distributed systems must be designed to handle node failures gracefully without 

compromising the overall system's stability. This involves mechanisms like replication, fault 

detection, and recovery. For example, in a distributed web application, if one server fails, requests 

should automatically be redirected to other healthy servers. 

iv. Consistency and Replication: Maintaining data consistency across distributed nodes is a challenge, 

especially when data is replicated for improved availability. Striking a balance between consistency 

and availability, as exemplified in distributed databases, requires careful design and trade-offs. 

v. Load Balancing: Distributing the workload evenly across nodes to ensure efficient resource 

utilization is a key challenge. Load imbalances can lead to performance degradation and uneven 

resource utilization. In a distributed web service, if some servers are overloaded while others are 

underutilized, users may experience slow response times. 

vi. Security and Privacy: Securing communications, authenticating users, and protecting sensitive 

data in a distributed environment is complex. Ensuring that data is encrypted and unauthorized 

access is prevented across distributed components is a constant challenge. In a distributed 

healthcare system, patient records must be securely accessed only by authorized medical 

personnel. 

vii. Coordination and Consensus: Achieving consensus among distributed nodes is challenging due to 

network delays and potential failures. Distributed algorithms like the Paxos or Raft consensus 

algorithms are used to ensure that all nodes agree on a particular value or decision. 

viii. Scalability: Distributed systems should be able to handle increasing workloads by adding more 

nodes. However, adding nodes may introduce additional complexities in terms of communication 



overhead and coordination. Scalability challenges are evident in large-scale online gaming systems 

that need to handle a growing number of players. 

ix. Debugging and Monitoring: Identifying and diagnosing issues in a distributed system can be 

complex due to the interactions between multiple components. Monitoring the system's health 

and performance across various nodes and ensuring quick identification of problems are critical. 

Debugging a distributed application like a microservices-based e-commerce platform can be 

daunting. 

x. Legacy Integration: Integrating new distributed components with existing legacy systems can be 

difficult due to differences in communication protocols, data formats, and technologies. Migrating 

from a monolithic architecture to a distributed one, as seen in enterprise software, requires 

careful planning and execution. 

In conclusion, while distributed systems offer numerous advantages, they also pose significant challenges 

that require careful consideration during design, implementation, and maintenance. Overcoming these 

challenges involves a combination of architectural decisions, algorithmic design, and ongoing 

management to ensure the reliability, scalability, and performance of the distributed system. 

 

Q. No. 2 Answer 

In a distributed system, Interface Definition Language (IDL) and middleware play crucial roles in facilitating 

communication and interaction between distributed components. They help abstract the complexities of 

network communication and enable seamless interaction between distributed objects and services. 

i. Interface Definition Language (IDL): IDL is a specification language used to define the interfaces of 

distributed objects or services in a language-neutral and platform-independent manner. It serves as a 

contract between different components, ensuring that they understand how to communicate with each 

other regardless of the programming languages or platforms they are implemented in. IDL typically 

includes information about data types, methods, and parameters that can be used to invoke remote 

services. 

IDL plays a role in: 

 Enabling Interoperability: By providing a common language for defining interfaces, IDL enables 

components written in different programming languages to communicate and collaborate 

seamlessly. 

 Generating Stubs and Skeletons: IDL compilers generate code stubs on the client side and 

skeletons on the server side. Stubs help the client-side code communicate with remote services, 

while skeletons handle incoming requests on the server side. 

 Type Marshalling: Distributed systems often involve passing data between different machines 

with varying data representations. IDL ensures proper data serialization and deserialization, 

ensuring that data can be transmitted and understood correctly across the network. 



 Decoupling Implementation: IDL allows the interface to be defined separately from the 

implementation, promoting loose coupling between components. This enables changes to the 

implementation without affecting clients using the service. 

ii. Middleware: Middleware is a layer of software that sits between the operating system and the 

application in a distributed system. It provides a set of services and abstractions that simplify the 

development, deployment, and management of distributed applications. Middleware handles 

communication, security, and various aspects of distributed computing, abstracting away the low-level 

network details. 

Roles of middleware in distributed systems: 

 Communication Abstraction: Middleware abstracts the complexities of network communication, 

allowing developers to interact with remote components using familiar programming constructs. 

It provides APIs and protocols for remote procedure calls (RPC), message passing, and other 

communication patterns. 

 Location Transparency: Middleware provides location-independent addressing, allowing 

components to interact with remote services using logical addresses rather than dealing with 

physical network locations. 

 Scalability and Load Balancing: Middleware often includes mechanisms for load balancing and 

managing the distribution of workloads across distributed nodes. This helps in improving system 

performance and resource utilization. 

 Security and Authentication: Middleware offers security mechanisms to ensure secure 

communication and data protection between distributed components. It provides authentication, 

authorization, and encryption services. 

 Transaction Management: Middleware can handle distributed transactions, ensuring that 

operations across multiple components maintain data consistency and integrity. 

 Error Handling and Fault Tolerance: Middleware provides error handling and recovery 

mechanisms to manage failures and faults in distributed systems. It can handle issues like network 

failures, node crashes, and retries. 

 Concurrency and Synchronization: Middleware offers synchronization and coordination 

mechanisms to manage concurrent access to shared resources across distributed nodes. 

Remote Method Invocation (RMI) in Distributed Object-Based Systems: 

RMI is an approach used in distributed object-based systems to enable communication and interaction 

between objects residing on different machines. It allows a client object to invoke methods on a remote 

object as if it were a local method call.  



 

Figure 1 Demonstration of Working of RMI 

Here's how RMI works: 

 Interface Definition: The interface of the remote object is defined using an IDL, specifying the 

methods that can be invoked remotely. 

 Stubs and Skeletons: The IDL compiler generates stubs on the client side and skeletons on the 

server side. Stubs act as proxies for the remote objects, intercepting method calls and transmitting 

them over the network. Skeletons receive incoming method calls, decode them, and invoke the 

actual methods on the server object. 

 Registry: The RMI registry acts as a central repository for remote object references. Clients use 

the registry to look up the references of remote objects they want to interact with. 

 Marshalling and Unmarshalling: Parameters and return values passed between client and server 

are marshalled (serialized) on the client side and unmarshalled (deserialized) on the server side. 

This ensures that data can be transmitted over the network in a platform-independent format. 

 Invocation: The client-side stub marshals the method call parameters, sends them over the 

network to the server-side skeleton, which unmarshals the parameters, invokes the actual method 

on the server object, marshals the return value, and sends it back to the client. 

 Synchronization and Concurrency: Middleware might provide mechanisms for synchronization 

and concurrency control to manage multiple clients interacting with remote objects concurrently. 

RMI abstracts away the complexities of network communication and allows developers to work with 

remote objects in a manner similar to working with local objects, promoting a natural and intuitive 

programming experience in distributed systems. 



Q. No. 3 Answer: 

A Distributed File System (DFS) is a networked file system that allows multiple users and applications to 

access and share files and directories across a network of computers. It provides a unified and transparent 

view of storage resources distributed across different machines, enabling efficient data management, 

access, and collaboration in a distributed environment. 

Encouraging Sharing with DFS: DFS encourages sharing a storage device by providing a consistent and 

shared file storage environment across multiple machines. This allows users and applications to access and 

manipulate files and directories as if they were stored locally, regardless of the physical location of the 

storage devices. The sharing is facilitated through a well-defined architecture that abstracts the 

complexities of network communication and distributed storage management. 

 

 

Figure 2 Architecture of Distributed File System 

Architecture of DFS: 

i. Client Machines: These are the computers where users or applications initiate file access and 

manipulation requests. Clients interact with the DFS to perform operations on files, such as 

reading, writing, and deleting. 

ii. DFS Servers: These are the machines that host the actual storage devices and manage the 

distribution and replication of files. DFS servers provide access to files and handle file-related 

operations on behalf of clients. 



iii. Namespace: The namespace is a logical abstraction that defines the structure and hierarchy of 

files and directories in the DFS. It provides a consistent naming convention, allowing users and 

applications to refer to files using familiar paths. 

iv. Metadata Servers: Metadata servers store the metadata associated with files and directories in 

the DFS. Metadata includes information like file names, permissions, ownership, timestamps, and 

file structures. Metadata servers maintain the directory structure and keep track of where data 

blocks are stored. 

v. Data Servers: Data servers are responsible for storing the actual file data. Files are typically divided 

into smaller data blocks that are distributed across different data servers for better performance 

and fault tolerance. 

DFS encourages sharing in the following ways: 

i. Transparency: DFS abstracts the underlying complexities of distributed storage and network 

communication. Clients interact with files using familiar file paths, regardless of the physical 

location of the data. 

ii. Location Independence: Clients do not need to know the exact location of files on the storage 

devices. The DFS handles the mapping between logical file paths and physical storage locations. 

iii. Scalability: DFS allows the addition of more storage devices and servers as needed, enabling 

seamless expansion of storage capacity without disrupting user access. 

iv. Data Replication: To enhance fault tolerance and availability, DFS can replicate data across 

multiple data servers. This ensures that even if one server fails, the data is still accessible from 

other servers. 

v. Caching: DFS may implement caching mechanisms to store frequently accessed data in client-side 

caches. This improves access speed and reduces network traffic. 

vi. Concurrency Control: DFS provides mechanisms for concurrent access to files by multiple clients. 

It manages locks and synchronization to ensure data consistency. 

vii. Security: DFS enforces access control policies, allowing administrators to set permissions and 

restrict user access to files and directories. 

viii. Backup and Recovery: DFS architecture often includes mechanisms for regular backups and 

efficient data recovery in case of failures. 

In summary, a Distributed File System (DFS) encourages sharing a storage device by abstracting the 

complexities of distributed storage, providing a consistent naming convention, and managing metadata 

and data distribution across multiple servers. This architecture allows users and applications to access and 

manipulate files in a seamless and transparent manner, promoting efficient collaboration and resource 

utilization in a distributed environment. 

 

 



Q. No. 4 Answer: 

The differences between thread and processes are as follows: 

 Threads Processes 

 Smallest unit of a process Independent and complete execution unit 

 Less overhead as they share resources More overhead due to separate resources 

 Easier communication due to shared memory Requires inter-process communication mechanisms 

 Faster context switching Slower context switching 

 Share memory and resources within the process Have separate memory and resources 

 Less isolation, as threads share resources High isolation, processes run independently 

 Typically, easier to scale due to shared state Scaling can be complex due to separate states 

 Faster to create threads compared to processes Processes take longer to create 

 One thread can impact the entire process One process failure usually doesn't affect others 

 Harder to recover due to shared resources Easier to recover due to isolation 

 Multiple threads in a web server Separate processes for different applications 

Checkpoint and Recovery: A checkpoint is a mechanism in a computing system that involves periodically 

saving the current state of a process or application. This state includes variables, data structures, and other 

relevant information. The purpose of checkpoints is to provide a point of recovery in case of system 

failures. If a failure occurs, the system can restore the application to a previously saved checkpoint state, 

reducing the amount of work lost due to the failure. 

Distributed Commit: Distributed commit refers to the process of coordinating and ensuring that all 

distributed components involved in a distributed transaction either successfully complete their part of the 

transaction or none of them commit at all. In a distributed system, a transaction may involve multiple 

nodes or processes, and ensuring that all nodes agree to commit or abort a transaction is critical for 

maintaining data consistency and integrity. 

Distributed commit involves several steps: 

1. Transaction Execution: Each node performs its part of the transaction, which could involve 

updates to local and remote resources. 

2. Voting Phase: Each participating node votes whether it is ready to commit the transaction or not. 

If any node encounters an issue or cannot commit, it votes to abort. 



3. Coordinator's Decision: A central coordinator or a consensus algorithm evaluates the votes. If all 

votes are to commit, the coordinator decides to commit. If any vote is to abort, the coordinator 

decides to abort. 

4. Commit/Abort Phase: Based on the coordinator's decision, each node performs the actual 

commit or abort action. 

Distributed commit is essential to ensure that even in the face of failures or network issues, the system 

maintains data integrity and consistency. If any node fails during the commit process, recovery 

mechanisms are employed to bring the system back to a consistent state. 

 

Q. No. 5 Answer: 

Flat transactions, also referred to as simple transactions, are self-contained units of work in transaction 

processing where no sub-transactions are included. They represent discrete operations that are executed 

as a single entity and are either fully committed or entirely rolled back. This straightforward structure 

facilitates the management of individual transactions. 

In contrast, nested transactions introduce a hierarchical structure by allowing transactions to encompass 

sub-transactions. Each sub-transaction is treated as an independent unit of work within the scope of the 

parent transaction. The outcome of a nested transaction can influence the overall outcome of the parent 

transaction, providing a more granular and organized approach to complex operations. 

Optimistic concurrency control is an advanced strategy employed in distributed transaction systems to 

manage concurrent access to shared resources with minimized contention and locking. The approach is 

grounded in the premise that conflicts between transactions are infrequent and that most transactions 

can proceed independently. 

The workflow of optimistic concurrency control follows several key stages: 

i. Transaction Execution: A transaction initiates by reading required data without immediate 

acquisition of locks. It then performs its operations, assuming independence from other 

concurrent transactions. 

ii. Validation Phase: Upon completion of operations, the transaction seeks to commit. Before 

finalizing the commit, it undergoes a validation step where it verifies whether any conflicting 

transactions have altered the data it accessed. 

iii. Validation Check: The validation procedure involves a comparison of the data read during the 

transaction's execution against the current state of the system. If conflicting changes are detected, 

the validation fails. 

iv. Commit or Abort: Successful validation allows the transaction to proceed with committing its 

changes. If validation fails due to conflicts, the transaction is aborted. 

v. Retrying or Rolling Back: In case of validation failure, the transaction can be retried by revisiting 

its data and resolving conflicts. Alternatively, the transaction can be rolled back to maintain data 

consistency. 



Advantages and Challenges of Optimistic Concurrency Control: 

Advantages: 

 Reduced Locking: Optimistic control diminishes lock usage, curbing contention and ameliorating 

system performance. 

 Elevated Throughput: Independent transaction execution escalates throughput, surpassing 

conventional locking-based methods. 

 Scalability Enhancement: Optimistic control aligns with distributed systems, alleviating cross-node 

lock management complexities. 

 Deadlock Mitigation: By not holding locks throughout execution, the risk of deadlocks is mitigated. 

Challenges: 

 Validation Overhead: Validation phase can introduce additional overhead, particularly when 

multiple transactions access the same data. 

 Rollback Management: Handling aborted transactions and their ramifications necessitates 

meticulous management. 

 Limited Applicability: Optimistic control may not be universally suitable, particularly for 

transactions exhibiting high contention. 

In summation, optimistic concurrency control provides an effective mechanism for orchestrating 

concurrent access within distributed transactions. It combines minimized locking with efficient 

throughput, though challenges in validation and rollback management must be addressed for optimal 

implementation. 

 

Q. No. 6 Answer: 

Synchronizing physical clocks across distributed systems presents challenges due to factors like network 

delays, clock drift, and varying clock speeds among different machines. Achieving precise and consistent 

clock synchronization in such an environment is intricate. However, logical clocks provide an effective 

solution to address these challenges and achieve a notion of synchronized time within distributed systems. 

Difficulty in Synchronizing Physical Clocks: 

Synchronizing physical clocks across distributed systems is complex due to several reasons: 

i. Network Delays: Network latencies and varying communication delays introduce discrepancies in 

clock readings between different machines. 

ii. Clock Drift: Inherent inaccuracies in physical clocks cause them to drift over time, leading to 

inconsistencies in timekeeping. 

iii. Clock Skew: Different machines have distinct clock speeds, causing the clocks to drift apart at 

varying rates. 



iv. Asymmetric Communication: Unequal communication times for messages lead to asymmetrical 

clock adjustments. 

Clock Synchronization using Logical Clocks: 

Logical clocks provide a solution to clock synchronization challenges by focusing on the order of events 

rather than achieving globally synchronized physical time. Logical clocks assign logical timestamps to 

events based on causality relationships, allowing consistent ordering of events across distributed systems. 

Two well-known algorithms for logical clocks are Lamport's Logical Clocks and Vector Clocks. 

1. Lamport's Logical Clocks:  

Lamport's Logical Clocks algorithm is a fundamental approach to capturing causality relationships and 

achieving event ordering in distributed systems. This algorithm addresses the challenge of 

synchronizing physical clocks by prioritizing the sequence of events rather than striving for perfect 

time synchronization. 

Algorithm Description: 

i. Each process maintains its own logical clock, initially set to zero. 

ii. When an event occurs within a process, the process increments its logical clock by one, generating 

a timestamp for the event. 

iii. When a message is sent from one process to another, the sender includes its current logical clock 

value in the message. 

iv. Upon receiving a message, the receiver updates its logical clock to the maximum of its current 

value and the received timestamp. This adjustment ensures that causally related events are 

correctly ordered. 

v. The logical clock values for each process capture the progression of events in a causally consistent 

manner, allowing events to be arranged based on their logical timestamps. 



 

Figure 3 Demonstration of Lamport's Logical Clock Algorithm 

Advantages and Limitations: 

 Advantages: Lamport's Logical Clocks algorithm provides a simple and intuitive approach to 

ordering events based on causality. It ensures that events that are causally related are always 

correctly ordered. 

 Limitations: The algorithm assumes that the events are causally related if they are connected by 

message sends and receives. However, events that are not directly related by messages may still 

have an ordering ambiguity. 

 

2. Vector Clocks:  

Vector Clocks extend the concept of logical clocks by considering causal relationships among events 

involving multiple processes. This algorithm addresses the limitations of Lamport's algorithm by 

maintaining additional context about the causal history of events across processes. 



Algorithm Description: 

i. Each process maintains a vector clock, initially set to zero for all processes. The size of the vector 

corresponds to the number of processes in the system. 

ii. When an event occurs within a process, the process increments its own vector clock element by 

one. 

iii. When a message is sent from one process to another, the sender includes its entire vector clock 

in the message. 

iv. Upon receiving a message, the receiver updates its vector clock elements to the maximum of its 

own elements and the corresponding elements in the received vector clock. This adjustment 

captures the causal history of events involving different processes. 

v. The vector clock values for each process provide a comprehensive view of the causal relationships 

across processes, enabling accurate event ordering. 

 

Figure 4 Demonstration of Vector Clock Algorithm 

Advantages and Limitations: 

 Advantages: Vector Clocks address the limitations of Lamport's algorithm by providing a more 

nuanced understanding of causal relationships across processes. They allow for accurate event 

ordering in scenarios where events are distributed across multiple processes. 

 Limitations: Vector Clocks still rely on the assumption that message sends and receives establish 

causal relationships. They require knowledge of the total number of processes in the system, 

which can be challenging to maintain dynamically. 

 



Advantages of Logical Clocks: 

 Causality Preservation: Logical clocks ensure that causally related events are correctly ordered, 

irrespective of clock inaccuracies. 

 Event Ordering: Logical clocks provide a consistent way to order events, facilitating accurate 

understanding of the sequence of events in distributed systems. 

 Decentralized: Logical clocks do not require global synchronization and are based on local 

observations of events, making them suitable for distributed environments. 

In conclusion, synchronizing physical clocks in distributed systems is challenging due to network delays, 

clock drift, and varying speeds. Logical clocks offer a solution by focusing on event ordering rather than 

achieving precise physical time synchronization. Algorithms like Lamport's Logical Clocks and Vector Clocks 

ensure consistent event sequencing while addressing the complexities inherent in physical clock 

synchronization. 

 

Q. No. 7 Answer: 

Replicating services is a fundamental technique in distributed systems that involves creating duplicate 

instances of a service or application across multiple nodes. This approach addresses the challenges posed 

by potential failures and contributes to improved availability, reliability, and performance of services. 

Reasons for Replicating Services: 

i. Fault Tolerance: One of the primary motivations for replicating services is to enhance fault 

tolerance. By maintaining multiple copies of a service, the system can continue to function even if 

one or more replicas fail due to hardware failures, software bugs, or other issues. If one replica 

becomes unavailable, clients can be seamlessly directed to a healthy replica, minimizing service 

disruptions. 

ii. Load Balancing: Replicating services aids in distributing incoming requests evenly among available 

replicas. This load balancing strategy prevents a single instance from being overwhelmed by high 

traffic and ensures that resources are efficiently utilized. Load balancing improves response times 

and prevents performance degradation during periods of high demand. 

iii. Geographical Distribution: Replicating services across different geographical locations allows 

users to access services from a nearby replica, reducing network latency and enhancing the user 

experience. This approach is particularly crucial for applications that require low-latency 

interactions, such as real-time communication or content delivery. 

iv. Scalability: Replication supports horizontal scalability, allowing the system to accommodate 

growing workloads by adding more replicas. This dynamic scaling ensures that the system can 

handle increased demand without compromising performance. 

v. High Availability: Replication contributes to high availability by ensuring that there are multiple 

points of access to the service. This availability is especially important for critical applications that 

require constant access, such as online banking or e-commerce platforms. 



vi. Redundancy: Replicating services creates redundancy, which acts as a safety net in case of 

unexpected failures. Redundancy safeguards against single points of failure and reduces the 

likelihood of service outages. 

vii. Resilience to Updates: Replication facilitates seamless updates and maintenance of services. 

During updates, one replica can be taken offline while the others continue to provide service, 

ensuring continuous availability. 

viii. Data Locality: In scenarios where data needs to be stored and accessed locally, replicating services 

with localized data ensures faster access times and minimizes data transfer over networks. 

ix. Parallel Processing: Replicated services can process requests in parallel across multiple instances, 

enabling faster data processing and computation. 

Challenges and Considerations: 

 Data Consistency: Maintaining consistent data across replicas can be complex, especially in 

scenarios where updates need to be synchronized. 

 Conflict Resolution: In distributed systems, conflicts may arise when different replicas update the 

same data simultaneously. Effective conflict resolution mechanisms are necessary to ensure data 

integrity. 

 Replication Overhead: Replicating services introduces overhead in terms of network 

communication, data synchronization, and resource utilization. 

 Synchronization: Ensuring synchronization between replicas requires careful design to avoid 

issues like split-brain scenarios. 

 Cost: Running multiple replicas incurs costs related to hardware, maintenance, and operational 

management. 

Thus, replicating services is a strategic approach that addresses challenges related to fault tolerance, load 

balancing, geographical distribution, scalability, and high availability in distributed systems. By maintaining 

duplicate instances of services, organizations can deliver reliable, responsive, and high-performance 

applications to users, even in the face of failures and fluctuations in demand. While replication introduces 

complexities, the benefits in terms of improved service quality and user experience make it an 

indispensable technique in modern distributed computing environments. 

Fault tolerance refers to a system's ability to continue functioning even in the presence of failures or faults. 

Replicating services is a common strategy to achieve fault tolerance in distributed systems. Fault-tolerant 

services aim to provide consistent and reliable functionality despite hardware failures, software bugs, or 

other unforeseen issues. 

 

Approaches to Achieving Fault Tolerant Services: 

i. Active Replication: In active replication, multiple copies of the service run concurrently, and all 

incoming requests are executed by each replica. The results are compared to detect faults, and 



only correct responses are returned to clients. This approach ensures high reliability but may 

introduce overhead due to multiple executions. 

ii. Passive Replication: In passive replication, only one replica, called the primary, processes 

incoming requests, while the others, called backups or standbys, remain idle. If the primary fails, 

a standby is promoted to become the new primary. Passive replication minimizes overhead but 

may introduce a delay in failover. 

iii. Stateful vs. Stateless Replicas: Stateful replicas maintain their own local states, which are 

synchronized with the primary. Stateful replicas are used when the service has an internal state 

that needs to be preserved. Stateless replicas do not maintain internal states and can quickly take 

over the primary's responsibilities. 

iv. Quorum-based Approaches: Quorum-based protocols ensure consistency and fault tolerance by 

requiring a certain number of replicas to agree on a decision. This approach prevents split-brain 

situations and ensures that only a correct replica is chosen to take over. 

Benefits of Fault Tolerant Services: 

 Continuous Availability: Fault-tolerant services maintain their functionality even during failures, 

preventing service downtime. 

 Data Integrity: Replicating data ensures that data remains consistent and accurate across multiple 

copies. 

 Disaster Recovery: In case of data center failures or natural disasters, backup replicas can be 

brought online to ensure service continuity. 

 User Experience: Fault tolerance leads to a smoother user experience, as users encounter minimal 

disruptions or delays due to failures. 

Challenges: 

 Consistency: Ensuring consistent data across replicas and handling updates or changes can be 

complex. 

 Overhead: Replicating and synchronizing data introduces network and computational overhead. 

 Conflict Resolution: Handling conflicts when replicas have divergent states requires careful design 

and coordination. 

 Complexity: Implementing and managing fault-tolerant services can be intricate and demand 

additional resources. 

In conclusion, replicating services is a crucial strategy to achieve fault tolerance, enhance availability, and 

improve performance in distributed systems. By maintaining multiple copies of services and employing 

various replication strategies, systems can mitigate the impact of failures and provide reliable services to 

users. 

 



Q. No. 8 Answer: 

Cascading aborts, also known as the "domino effect," occur in distributed systems when the failure of one 

transaction triggers a chain reaction of aborts in dependent or subsequent transactions. This can lead to 

a widespread impact on the system's stability, performance, and data integrity. 

Causes of Cascading Aborts: 

i. Dependency Chains: In a distributed environment, transactions often have dependencies on one 

another. When a transaction fails and is aborted, the changes made by that transaction may have 

already been propagated to other transactions that depended on it. These dependent transactions 

might no longer be valid due to the failure of the initial transaction, leading to their own aborts. 

ii. Inconsistent State: If a failed transaction modifies shared data before it is aborted, the data might 

be left in an inconsistent or incorrect state. Subsequent transactions that depend on this modified 

data can encounter errors or conflicts, resulting in their own aborts. 

In-depth Solutions to Cascading Aborts: 

i. Isolation and Consistency: Ensuring strong isolation between transactions using techniques like 

multi-version concurrency control (MVCC) can prevent cascading aborts. MVCC allows each 

transaction to work on a separate version of the data, eliminating interference from other 

transactions' changes. 

ii. Transaction Prioritization: Prioritize the execution of dependent transactions over independent 

ones. This way, if a transaction is likely to fail, its dependent transactions are not executed, 

preventing cascading effects. 

iii. Rollback Segmentation: Instead of completely rolling back a transaction, consider segmenting the 

rollback. Only the parts of the transaction affected by the failure are rolled back, minimizing the 

impact on other transactions. 

iv. Deadlock Detection and Resolution: A well-designed deadlock detection and resolution 

mechanism can prevent transactions from waiting indefinitely due to cascading aborts caused by 

deadlock scenarios. 

v. Retry and Compensation: If a transaction fails due to a temporary issue, it can be retried after the 

issue is resolved. Compensation mechanisms can be employed to reverse any partial effects of the 

failed transaction. 

vi. Consistent Recovery Mechanisms: In scenarios where a failure occurs during a transaction's 

execution, having mechanisms in place to recover to a consistent state can prevent cascading 

effects on dependent transactions. 

vii. Advanced Locking and Synchronization: Use advanced locking mechanisms that allow finer 

control over data access and prevent multiple transactions from accessing the same data 

simultaneously. 



viii. Snapshot Isolation: Use snapshot isolation techniques that allow each transaction to work with a 

consistent snapshot of the database, ensuring that changes made by a failed transaction are not 

propagated to other transactions. 

ix. Deterministic Execution: Ensure that transactions are executed deterministically, regardless of the 

order of execution. This prevents variations in execution that could lead to different outcomes and 

cascading effects. 

Benefits of Solving Cascading Aborts: 

 Data Integrity: Preventing cascading aborts maintains data integrity and consistency across the 

system. 

 Stability: By avoiding the domino effect, the stability of the distributed system is enhanced, 

leading to more reliable and predictable behavior. 

 Efficiency: Preventing cascading aborts reduces unnecessary work, resource usage, and system 

downtime caused by aborting valid transactions. 

Challenges: 

 Implementing effective solutions requires careful design and coordination, as the 

interdependencies between transactions can be complex. 

 Some solutions might introduce overhead in terms of performance or complexity, especially in 

scenarios with high transaction rates. 

In conclusion, cascading aborts pose a significant challenge in distributed systems, affecting data 

consistency and system stability. Addressing cascading aborts demands a combination of proper isolation 

techniques, prioritization, rollback segmentation, and consistent recovery mechanisms. By understanding 

the causes and applying in-depth solutions, distributed systems can effectively prevent the domino effect 

of transaction failures. 

The atomic commit protocol is a fundamental mechanism used in distributed systems to ensure that a 

group of transactions either all commit or all abort, maintaining data consistency and integrity across 

multiple nodes. In scenarios where multiple transactions need to be coordinated and committed together, 

the atomic commit protocol plays a crucial role. 

Needs of Atomic Commit Protocol: 

i. Data Consistency: To maintain data consistency across distributed systems, it's essential that a 

group of related transactions commit together or none of them commit at all. 

ii. Fault Tolerance: The atomic commit protocol ensures that even if a node or participant fails during 

the commit process, the system can recover without causing inconsistencies. 

iii. Coordination: When transactions span multiple nodes, ensuring that they all reach a consensus 

on whether to commit or abort is vital for proper operation. 

Roles of Atomic Commit Protocol: 



i. Coordinator: The coordinator initiates the atomic commit process and sends commit or abort 

requests to all participants. 

ii. Participants: Participants are nodes or processes involved in the distributed transaction. They 

respond to the coordinator's request with their readiness to commit or abort. 

iii. Voting Phase: During the voting phase, participants respond to the coordinator's request with a 

vote to commit or abort. This phase ensures that all participants are ready to proceed. 

iv. Decision Phase: Based on participants' votes, the coordinator makes a decision to commit or abort 

the transaction. If any participant votes to abort, the coordinator decides to abort. 

v. Commit Phase: If the coordinator decides to commit, it sends a commit request to all participants. 

Participants then finalize their transactions and release any locks. 

vi. Abort Phase: If the coordinator decides to abort, it sends an abort request to all participants. 

Participants undo their changes and release any locks acquired during the transaction. 

Benefits of Atomic Commit Protocol: 

 Data Integrity: The atomic commit protocol ensures that transactions are committed consistently, 

preventing data inconsistencies. 

 Coordination: It provides a mechanism for coordinating multiple transactions across distributed 

nodes. 

 Fault Tolerance: The protocol handles failures in participants or the coordinator, allowing recovery 

without leaving the system in an inconsistent state. 

Challenges: 

 Two-Phase Commit Blocking: The protocol might block indefinitely if the coordinator crashes after 

the voting phase but before the decision phase. This issue is addressed by protocols like Three-

Phase Commit. 

 Performance Overhead: The protocol introduces communication overhead and can affect 

performance, especially in scenarios with high contention or network latency. 

In conclusion, cascading aborts can be prevented through proper isolation, rollback segmentation, 

timeouts, and retry mechanisms. The atomic commit protocol ensures that transactions are consistently 

committed or aborted in distributed systems, addressing the needs for data consistency, fault tolerance, 

and coordination across multiple participants. 

 

Q. No. 9. Answer 

a. Christian’s Algorithm 

Christian's algorithm is a time synchronization algorithm designed for distributed systems. It was proposed 

by Gerard J. Holzmann in 1989. The algorithm is used to synchronize the clocks of multiple computers or 



nodes in a network, ensuring that they have a consistent notion of time. It's particularly useful in scenarios 

where precise time synchronization is necessary for coordinated actions or accurate event ordering. 

 

Figure 5 Cristian's Algorithm 

Algorithm Overview: 

Christian's algorithm is relatively simple and relies on the concept of estimating network delays to achieve 

clock synchronization. The algorithm involves two main entities: the time requester (client) and the time 

server. 

i. The time requester sends a request for the current time to the time server. 

ii. Upon receiving the request, the time server records its current time and sends the response back 

to the time requester. 

iii. When the time requester receives the response, it notes the time it received the response. 

iv. The time requester calculates the round-trip time by subtracting the time it sent the request from 

the time it received the response. Since the response contains the time according to the time 

server, the halfway point between sending the request and receiving the response represents the 

most accurate time at which the request was initiated. 

v. The time requester then estimates the clock offset by taking half of the round-trip time and 

subtracting it from the time the response was received. 

Advantages: 

i. Simple: Christian's algorithm is straightforward to implement and doesn't require specialized 

hardware. 

ii. Decentralized: The algorithm doesn't rely on a central time server, which can be useful in scenarios 

where such a server might be a single point of failure. 

iii. Reasonably Accurate: The algorithm can achieve reasonable accuracy in terms of time 

synchronization, especially when network delays are consistent. 



Limitations: 

i. Network Variability: The accuracy of the algorithm heavily depends on the assumption that 

network delays are consistent and symmetric. In real-world networks, delays can vary due to 

congestion, routing changes, and other factors. 

ii. Clock Drift: The algorithm doesn't account for clock drift, which can lead to time discrepancies 

over extended periods. 

iii. Latency Impact: The algorithm requires the round-trip time, which can be affected by network 

latency and other factors, impacting the accuracy of the synchronization. 

While Christian's algorithm provides a basic approach to clock synchronization, modern distributed 

systems often use more sophisticated algorithms, such as the Network Time Protocol (NTP) or the 

Precision Time Protocol (PTP), which account for factors like network variability, clock drift, and scalability 

to achieve higher levels of time synchronization accuracy. 

 

b. Recovery Approach in Distributed System 

In distributed systems, recovery approaches are strategies and techniques used to restore the system to a 

consistent and operational state after failures or faults have occurred. Recovering from failures is crucial 

to ensure data integrity, system availability, and continued functionality. There are several recovery 

approaches in distributed systems, each tailored to address different types of failures and scenarios. Here 

are some common recovery approaches: 

i. Checkpoint and Rollback: 

 Checkpointing involves periodically saving the system's state, including process states and 

data, to stable storage. 

 If a failure occurs, the system can be restored to a consistent state by rolling back to the 

most recent checkpoint and replaying the operations that occurred since that checkpoint. 

 This approach is effective for transient failures but can be resource-intensive due to the 

need for frequent checkpoints. 

ii. Process Migration: 

 In the event of a failure, a process can be migrated from a failed node to a healthy one. 

 This approach requires maintaining consistent process states and communication 

channels to facilitate seamless migration. 

 Process migration can be useful for load balancing and maintaining service availability. 

iii. Replication and Redundancy: 

 Replicating data and services across multiple nodes ensures that if one node fails, another 

can take over. 



 Replication introduces redundancy and can be paired with mechanisms like quorum-

based decision-making to ensure consistent data even in the presence of failures. 

iv. Message Logging and Replay: 

 Log messages and operations as they occur to a durable storage. 

 In case of a failure, replay the logged messages and operations to restore the system's 

state to a consistent point. 

 This approach helps ensure that no operation is lost even if a node fails. 

v. Quorum-Based Techniques: 

 Quorum-based protocols ensure that a certain number of nodes must agree for a decision 

(commit or abort) to be made. 

 Quorum techniques help prevent split-brain situations and maintain data consistency 

during failures. 

vi. Shadow Copies: 

 Maintain a shadow copy of a resource or system that is updated concurrently. 

 In case of failure, the system can switch to the shadow copy, ensuring minimal downtime. 

vii. Reconfiguration: 

 Dynamically reconfigure the system by adjusting the roles of nodes or redistributing tasks 

to healthy nodes. 

 Reconfiguration can help maintain system functionality while isolating and recovering 

from failures. 

viii. Replication with Lazy Replication or Eager Replication: 

 In a replicated environment, lazy replication defers updates until they are absolutely 

necessary, while eager replication updates replicas as soon as the original copy is updated. 

 These approaches balance between data consistency and performance. 

ix. Atomic Commit Protocols: 

 Ensure that a group of transactions either all commit or all abort, maintaining data 

integrity across multiple nodes. 

 Atomic commit protocols help recover from scenarios where distributed transactions 

need coordinated actions. 

x. Recovery Blocks: 

 Divide the distributed system into recovery blocks that are independently recoverable. 

 This approach simplifies recovery by minimizing the scope of impact during a failure. 



Each recovery approach comes with its own advantages and challenges. The choice of approach depends 

on factors such as the nature of the system, the types of failures expected, the required level of 

consistency, and the desired trade-off between resource utilization and recovery time. An effective 

recovery strategy should balance these considerations to ensure the system's robustness and ability to 

handle failures while minimizing disruptions. 

 

c. CORBA Services 

CORBA (Common Object Request Broker Architecture) is a middleware technology that facilitates 

communication and interaction between distributed objects in a networked environment. CORBA services 

refer to a set of standardized services provided by the CORBA framework to handle various aspects of 

distributed computing, such as communication, naming, time, security, and more. These services help 

developers build distributed applications by abstracting and simplifying complex tasks. 

Here are some of the CORBA services: 

i. Naming Service: 

 Provides a way to locate distributed objects in a network using human-readable names. 

 Allows clients to find objects by their names without knowing their network addresses. 

 Enables object location transparency. 

ii. Trading Service: 

 Enables objects to register their availability and capabilities in a directory service. 

 Clients can query the directory to find objects that offer specific services. 

 Facilitates dynamic discovery of services in a distributed environment. 

iii. Event Service: 

 Provides a mechanism for asynchronous communication between objects. 

 Objects can publish events, and other objects can subscribe to those events. 

 Enables efficient and decoupled communication in distributed systems. 

iv. Notification Service: 

 Similar to the Event Service, but focuses on notifications and alarms. 

 Allows objects to send notifications to interested parties about certain events or 

conditions. 

v. Concurrency Control Service: 

 Provides mechanisms for managing concurrent access to shared resources in a distributed 

environment. 



 Helps prevent data corruption and inconsistencies due to concurrent access. 

vi. Externalization Service: 

 Enables objects to be converted to a platform-independent format for communication and 

storage. 

 Ensures that objects can be exchanged between different programming languages and 

platforms. 

vii. Persistence Service: 

 Allows objects and their states to be saved and retrieved from a persistent storage system. 

 Ensures that objects maintain their state across system restarts or crashes. 

viii. Security Service: 

 Provides authentication and authorization mechanisms to ensure secure communication 

between distributed objects. 

 Supports secure authentication, access control, and data encryption. 

ix. Transaction Service: 

 Provides a way to manage distributed transactions involving multiple objects. 

 Ensures that a group of operations either all commit or all abort to maintain data 

consistency. 

x. Time Service: 

 Provides a consistent notion of time across distributed systems. 

 Ensures that timestamps and time-related operations are synchronized among objects. 

CORBA services are defined in the CORBA specification and are accessible through interfaces and APIs. 

They abstract complex distributed computing concerns, allowing developers to focus on building 

applications without having to implement low-level communication, security, and coordination 

mechanisms. The standardized nature of CORBA services promotes interoperability among different 

CORBA-compliant systems and simplifies the development of distributed applications. 

 

d. Monolithic and Microkernel 

A monolithic kernel is an operating system design where the entire operating system, including essential 

functions like memory management, file system management, device drivers, and system calls, is 

integrated into a single large and tightly interconnected executable binary. In a monolithic kernel 

architecture, all services and functionalities run in a single address space, which makes communication 

between different components efficient but also tightly coupled. 

Advantages of a Monolithic Kernel: 



i. Efficiency: Since all components reside in the same address space, function calls and data sharing 

between components are relatively fast. 

ii. Simplicity: Developing a monolithic kernel is often simpler because the entire system is contained 

within a single codebase. 

iii. Performance: Direct communication and interaction between components result in lower 

overhead compared to inter-process communication in a microkernel. 

iv. Resource Sharing: Components can easily share data structures and resources, leading to efficient 

resource management. 

Disadvantages of a Monolithic Kernel: 

i. Limited Modularity: Due to the tightly integrated nature of components, modifying or adding 

functionality can be complex and risky. 

ii. Reliability: A bug or failure in any component can potentially crash the entire system, reducing 

overall reliability. 

iii. Scalability: As the system grows, managing a monolithic kernel can become more challenging, 

leading to potential performance bottlenecks. 

iv. Security: Security vulnerabilities in one component can potentially compromise the entire 

system's security. 

Microkernel: 

A microkernel is an alternative operating system architecture where the core functionality of the operating 

system is kept minimal, with only essential services like process scheduling, memory management, and 

inter-process communication (IPC) handled in the kernel. Other non-essential services, such as file 

systems, device drivers, and networking protocols, are implemented as separate user-space processes. 

This design aims to achieve modularity and separation of concerns, allowing for easier development, 

maintenance, and extensibility. 

Advantages of a Microkernel: 

i. Modularity: Microkernels promote modular design by separating non-essential services from the 

kernel, making the system easier to modify and extend. 

ii. Reliability: With a smaller kernel, the potential impact of a kernel failure is minimized, improving 

overall system reliability. 

iii. Flexibility: Adding or updating individual components is easier in a microkernel architecture, 

reducing the risk of affecting the entire system. 

iv. Security: A smaller trusted computing base (the microkernel) can improve system security by 

limiting the attack surface. 

v. Portability: Microkernels are often more portable since much of the system's functionality is 

implemented in user-space components. 



Disadvantages of a Microkernel: 

i. Performance Overhead: The need for inter-process communication between user-space 

components can introduce performance overhead compared to direct function calls in a 

monolithic kernel. 

ii. Complexity of IPC: Implementing efficient inter-process communication mechanisms can be 

challenging and can introduce overhead. 

iii. Limited Efficiency: Critical system services, such as device drivers, may have reduced performance 

due to the context switches required for user-space communication. 

iv. Resource Management: Some essential services, such as memory management, may need to be 

implemented in both the kernel and user space, potentially increasing complexity. 

In summary, the choice between a monolithic kernel and a microkernel depends on factors such as 

performance requirements, modularity, reliability, and security. Monolithic kernels offer efficiency and 

simplicity but can be less modular and secure. Microkernels emphasize modularity and security but can 

introduce overhead due to inter-process communication. Modern variations, such as hybrid kernels, aim 

to combine the advantages of both architectures to find a suitable balance for specific use cases. 

 


