

2071 Shawan-New Back

1) Discuss the properties of Distributed System(DS). How interaction

model addresses the relevant issues in DS?

Ans: A distributed system is a collection of independent computers at networked

locations such that they communicate and interact only through message passing that

is viewed as a single coherent system by its users. Example: Internet, Mobile

Network, DNS:Distributed Database System.

The properties of Distributed System are:

• Concurrency: In a distributed system, multiple nodes can execute their tasks

simultaneously, resulting in concurrent operations. This property enables

efficient resource utilization and better performance but also introduces the

need for synchronization mechanisms to manage shared resources and prevent

data inconsistency.

• No Global Clock: Distributed systems lack a global clock due to differences

in clock speeds and network delays between nodes. This makes it challenging

to establish a consistent global time reference, which impacts synchronization

and coordination of events across the system.

• Partial Failure: Since distributed systems consist of multiple nodes, the

likelihood of individual node failures is higher than in centralized systems.

Therefore, distributed systems need to be designed with fault tolerance in

mind, ensuring that the system can continue to operate even when some nodes

fail.

• Communication: Communication between nodes in a distributed system can

involve various communication channels, such as message passing or remote

procedure calls. Network communication introduces latency, potential

message loss, and order-of-delivery issues, which must be addressed to ensure

reliable communication.

• Heterogeneity: Nodes in a distributed system can have different hardware,

operating systems, and software components. Managing heterogeneity is

crucial for interoperability and achieving system-wide goals.

• Scalability: Distributed systems should be able to scale horizontally (adding

more nodes) or vertically (upgrading individual nodes) to accommodate

changing workloads and user demands. Scalability can be challenging due to

issues like load balancing and maintaining consistent performance.

Interaction models are patterns or protocols that guide how nodes in a distributed

system communicate and coordinate with each other. These models help address the

relevant challenges in distributed systems:

• Remote Procedure Call (RPC): This model allows a node to invoke

procedures or methods on remote nodes as if they were local, abstracting the

complexities of network communication. RPC helps with communication and

coordination while hiding the underlying message passing details.

• Message Passing: In this model, nodes communicate by sending messages to

each other. This approach helps address communication challenges but

requires careful consideration of issues like message ordering, reliability, and

potential failures.

• Publish-Subscribe: This model facilitates communication between nodes by

allowing publishers to send messages to specific topics or channels, and

subscribers can receive messages from these topics. It supports flexible and

loosely coupled communication patterns.

• Distributed Shared Memory (DSM): DSM abstracts the memory of multiple

nodes as a single shared memory space, enabling processes to read and write

to this space as if it were local. This helps manage concurrency and data

sharing but requires mechanisms for consistency and synchronization.

• Coordination Models (e.g., Two-Phase Commit, Paxos, Raft): These models

provide protocols for achieving consensus and coordination among

distributed nodes. They address the challenges of maintaining consistency and

fault tolerance in distributed systems.

• MapReduce and Stream Processing: These models handle large-scale data

processing by dividing tasks into smaller subtasks that can be executed in

parallel on different nodes. They address scalability and data processing

challenges in big data scenarios.

In conclusion, distributed systems possess unique properties such as concurrency,

lack of a global clock, partial failure, communication challenges, heterogeneity, and

scalability issues. Interaction models provide protocols and patterns to address these

challenges by facilitating communication, synchronization, and coordination among

distributed nodes. The choice of interaction model depends on the specific

requirements and goals of the distributed system being designed.

2) What is importance of IDL in RMI? Write the operation of static RMI.

Ans: IDL stands for Interface Definition Language. It is a standardized language

used to define the interface or contract between software components, especially in

distributed systems. IDL provides a way to describe the methods, data structures,

and communication protocols that components will use to interact with each other.

IDL (Interface Definition Language) plays a crucial role in RMI (Remote Method

Invocation) by providing a standardized and language-neutral way to define the

remote interfaces that clients and servers use to communicate. The importance of

IDL in RMI includes:

• Language Neutrality: IDL allows developers to define remote interfaces in a

language-independent manner. This is particularly useful when RMI is used

to enable communication between systems implemented in different

programming languages.

• Interface Contract: IDL defines the contract between the client and the server.

It specifies the methods that can be invoked remotely, their parameters, and

return types. Both the client and the server must adhere to this contract,

ensuring that communication is consistent and reliable.

• Code Generation: From the IDL definition, tools can generate the necessary

code for both the client-side and server-side stubs and skeletons. Stubs and

skeletons are intermediary components that handle the marshaling and

unmarshaling of parameters and results during remote method calls.

• Consistency: IDL helps ensure that the remote interfaces are consistent

between different components of the distributed system. Changes to the

interface can be made in a controlled manner by updating the IDL definition

and regenerating the code.

• Abstraction: IDL abstracts the complexity of network communication,

serialization, and parameter passing. Developers can focus on defining the

interface and its methods without needing to delve into the low-level details

of distributed communication.

• Interoperability: IDL facilitates interoperability between systems that use

different programming languages. As long as the systems can generate

compatible stubs and skeletons from the IDL, they can communicate

seamlessly.

Static RMI is a variation of the traditional RMI approach that simplifies the setup

and configuration process. In a traditional RMI setup, objects are registered with the

RMI registry, and clients retrieve these objects to invoke methods remotely. In static

RMI, this registration step is eliminated, and objects are directly available for remote

invocation without explicitly registering them. Here's how static RMI operates:

1. Server-side Setup:

• Define the remote interface using IDL or Java interface.

• Implement the remote interface in a Java class.

• Compile the remote interface and implementation class.

• Generate stub and skeleton classes using the rmic tool (for Java RMI) or

appropriate tools for other languages.

2. Server Execution:

• Start the RMI registry, if necessary.

• Create an instance of the server implementation class.

• Export the remote object using a specific mechanism provided by the RMI

framework (e.g., UnicastRemoteObject.exportObject() in Java RMI).

3. Client-side Setup:

• Define the remote interface in the client's code (using the same IDL or Java

interface).

• Compile the client code.

4. Client Execution:

• Obtain a reference to the remote object using a factory method or lookup

method provided by the RMI framework.

• Invoke methods on the remote object as if it were a local object.

In static RMI, the server object is automatically made available for remote

invocation when it's created, without explicitly registering it with an RMI registry.

This approach simplifies the deployment and configuration process but may have

limitations in terms of flexibility and dynamic management of remote objects

compared to traditional RMI.

3) What are the characteristics of SUN-NFS? Discuss with its architecture

Ans: SUN Network File System (NFS) is a distributed file system protocol

developed by Sun Microsystems (now Oracle) that allows users and applications to

access files over a network as if they were local. It was designed to provide seamless

access to remote files and storage resources in a transparent and efficient manner.

Here are the key characteristics of SUN-NFS along with its architecture:

• Transparency: NFS aims to provide transparency to users and applications.

Remote files are accessed using standard file system operations, such as open,

read, write, and close, without requiring users to be aware of the fact that the

files are located on remote servers.

• Location Independence:NFS abstracts the physical location of files, allowing

users to access files regardless of where they are stored on the network.

• Caching: To improve performance, NFS supports caching of file data on the

client side. This reduces the need to repeatedly fetch data from the server,

especially for read-heavy workloads.

• Stateless Server:NFS servers are designed to be stateless, meaning they do

not maintain information about client sessions. This simplifies server design

and enhances fault tolerance.

• Interoperability: NFS promotes interoperability across different operating

systems and platforms. Clients and servers can be based on various operating

systems while still communicating effectively.

• File Locking: NFS supports file locking mechanisms for coordinating access

to files among multiple clients. This helps prevent conflicts and data

corruption when multiple clients attempt to modify the same file

simultaneously.

• Security: While early versions of NFS lacked robust security mechanisms,

modern versions incorporate features like Kerberos authentication and secure

communication protocols to enhance data protection.

• Scalability: NFS is designed to scale across a network of servers and clients,

making it suitable for large-scale distributed environments.

The architecture of SUN-NFS involves several components that work together to

enable remote file access:

• NFS Client: The client is the system that wants to access remote files. It issues

file system calls to the local operating system, which are then translated into

RPC (Remote Procedure Call) requests sent to the NFS server.

• NFS Server: The server hosts the remote files that the client wants to access.

It listens for RPC requests from clients and responds with the appropriate data

or metadata.

• RPC: NFS relies on Remote Procedure Calls for communication between the

client and server. The client sends RPC requests to the server, specifying the

requested operation (e.g., read, write, open) and the necessary parameters.

• File Handle: Each file on the server is uniquely identified by a file handle,

which is an opaque identifier that clients use to reference files in subsequent

requests.

• File System Operations: Clients issue file system operations like open, read,

write, and close. These operations are translated into RPC requests with the

file handle and necessary parameters.

• NFS Protocol Versions: NFS has undergone multiple protocol versions, each

with improvements and enhancements. The most well-known versions

include NFSv2, NFSv3, and NFSv4, with each version introducing new

features and addressing limitations of previous versions.

1. Protocol:

- It uses SUN RPC mechanism and SUN external data representation (XDR)

standard.

- The protocol is stateless. It enhances crash recovery.

- Each procedure call must contain all the information necessary to complete

the call.

2. Server Side:

- It provides file handle consisting of:

a) Filesystem id (identify disk partition)

b) I-node number (identify file)

c) Generation number

- File system id is stored in super block.

- Generation number is stored in I-node.

3. Client Side:

- It provides transparent interface to NFS.

- Mapping between remote file name and remote file address is done at server

boot time

through remote mount.

4) What are the common problems of physical clock synchronization

algorithm? Write Chandy-Lamport's algorithm for recording global

states in Distributed System

Ans: Physical clock synchronization, also known as time synchronization or clock

synchronization, refers to the process of aligning the timekeeping of different

devices or nodes in a distributed system to a common reference time. In a distributed

system, where multiple machines or nodes work together to achieve a common goal,

maintaining synchronized clocks is crucial for various tasks such as event ordering,

data consistency, scheduling, and coordination. However, there are several

challenges and problems associated with these algorithms:

• Clock Drift: Physical clocks are not perfect and can experience drift over time,

leading to inaccuracies in synchronization.

• Clock Skew: Clock skew refers to the difference in time rates between

different clocks. This can lead to uneven time progress among nodes, even if

they are initially synchronized.

• Network Delays: Communication delays between nodes can lead to

inaccuracies in clock synchronization. Variability in network delays can make

it difficult to maintain precise synchronization.

• Fault Tolerance: Clock synchronization algorithms need to account for nodes

that may fail or experience transient issues. Recovery mechanisms must be in

place to handle such scenarios.

• Complexity: Some clock synchronization algorithms are complex and require

careful tuning and configuration to achieve accurate synchronization.

• Dependency on Infrastructure: Certain algorithms may rely on specific

hardware or infrastructure features, making them less adaptable in different

environments.

• Scalability: Ensuring accurate synchronization in large-scale distributed

systems with numerous nodes can be challenging due to the potential for high

communication overhead.

• Security: Some algorithms might be vulnerable to attacks that aim to

manipulate the synchronization process for malicious purposes.

The Chandy-Lamport algorithm is used to record consistent global states in

distributed systems, which is essential for debugging and analyzing distributed

algorithms. The algorithm is based on the principle that a consistent global state can

be captured by observing the local states and the communication events (messages)

between processes.

Here's a simplified overview of the Chandy-Lamport algorithm:

Assumptions of the algorithm:

• There are finite number of processes in the distributed system and they do

not share memory and clocks.

• There are finite number of communication channels and they are

unidirectional and FIFO ordered.

• There exists a communication path between any two processes in the system

• On a channel, messages are received in the same order as they are sent.

Algorithm:

• Marker sending rule for a process P :

o Process p records its own local state

o For each outgoing channel C from process P, P sends marker along C

before sending any other messages along C.

(Note: Process Q will receive this marker on his incoming channel

C1.)

• Marker receiving rule for a process Q :

o If process Q has not yet recorded its own local state then

▪ Record the state of incoming channel C1 as an empty sequence

or null.

▪ After recording the state of incoming channel C1, process Q

Follows the marker sending rule

o If process Q has already recorded its state

▪ Record the state of incoming channel C1 as the sequence of

messages received along channel C1 after the state of Q was

recorded and before Q received the marker along C1 from

process P.

5) Measure the performance issue of non-token based Ricart- Agrawal

Algorithm. Write alternate algorithm to address those performance

issues.

Ans: The non-token-based Ricart-Agrawal algorithm is a mutual exclusion

algorithm used in distributed systems to ensure that only one process can access a

critical section at a time. However, this algorithm can suffer from certain

performance issues:

• High Message Overhead: The non-token-based approach requires each

process to send and receive messages to/from all other processes. This results

in high message overhead as the number of processes increases.

• Contention: Processes may request access to the critical section concurrently,

leading to contention for resources and potential delays due to message

transmission, processing, and replies.

• Blocking: If a process receives multiple requests simultaneously, it might

block all requests until it can enter the critical section, leading to further

delays.

• Deadlocks: Under certain conditions, the algorithm can result in deadlock

situations where processes are stuck waiting for each other to release

resources.

An alternate approach to address the performance issues of the non-token-based

Ricart-Agrawal algorithm is to use a distributed queue-based approach. This

approach maintains a queue of processes requesting access to the critical section.

Here's how the algorithm works:

• Request Queue: Each process maintains a local queue of requests to enter the

critical section.

• Request Propagation: When a process wants to enter the critical section, it

sends a request message to all other processes. The request message includes

the requesting process's ID and timestamp.

• Queue Update: Upon receiving a request, a process adds the requesting

process's information to its local queue, along with the timestamp.

• Priority Queue: Processes prioritize requests based on timestamps. The

process with the lowest timestamp gets priority.

• Access Decision: When a process wants to enter the critical section, it checks

if its request is at the front of its local queue. If it is, and no higher-priority

requests are pending, the process can enter the critical section.

• Release and Dequeue: After a process exits the critical section, it removes its

request from its local queue and notifies other processes by sending release

messages.

By using a distributed queue-based approach, the performance issues of the non-

token-based algorithm can be mitigated:

• Reduced Message Overhead: Processes send fewer messages, only updating

queues instead of sending messages to all processes.

• Contention and Blocking Mitigation: The distributed queue helps manage

contention and reduces the chances of blocking since processes are prioritized

based on timestamps.

• Deadlock Prevention: The queue approach helps prevent deadlocks because

processes can be serviced in an orderly manner based on timestamps.

• Optimized Resource Utilization: Processes only send messages when they

have a legitimate request, reducing unnecessary message transmission.

6) How to come to consensus in DS? Discuss with an approach, How do you

make the distributed system service highly available?

Ans: Coming to consensus in a distributed system means that all nodes in the system

agree on a particular value or decision. Achieving consensus is challenging due to

the potential for network delays, message losses, node failures, and the inherent

asynchrony of the distributed environment. One well-known approach to achieve

consensus is the Paxos algorithm.

The Paxos algorithm was introduced by Leslie Lamport to achieve consensus in a

distributed system. It uses a multi-round approach where nodes exchange messages

to reach agreement. Here's a high-level overview of the Paxos algorithm:

• Phase 1 - Prepare: A node (proposer) sends a "prepare" message to other

nodes (acceptors) containing a proposal number. Each acceptor checks if the

proposal number is higher than any proposal it has seen before. If it is, the

acceptor replies with a "promise" message that includes the highest proposal

it has accepted.

• Phase 2 - Accept: If the proposer receives promises from a majority of

acceptors, it chooses a value to propose and sends an "accept" message to the

acceptors. The acceptors will only accept the proposal if the value has not

been accepted in a previous proposal.

• Phase 3 - Learn: Once a value is accepted by a majority of acceptors, the

proposer broadcasts a "learn" message to all nodes, informing them of the

agreed-upon value.

Paxos ensures that only one value can be agreed upon and that the value is chosen

from the proposals that were presented. It is designed to work even in the presence

of failures and network delays.

Achieving high availability in a distributed system involves designing the system to

minimize downtime and provide continuous service even in the face of failures. Here

are some key approaches to making a distributed system highly available:

• Redundancy: Deploy multiple instances of services and components across

different nodes or data centers. If one instance fails, another can take over to

ensure continuity.

• Load Balancing: Distribute incoming requests evenly across multiple servers

to prevent any single server from becoming a bottleneck. This ensures that

resources are utilized optimally.

• Failover Mechanisms: Implement failover mechanisms that automatically

detect node failures and redirect traffic to backup nodes. This minimizes

downtime and maintains service availability.

• Replication: Replicate data across multiple nodes to ensure that if one node

fails, data is still accessible from other nodes. Replication can be achieved

through techniques like master-slave or multi-master replication.

• Health Monitoring: Continuously monitor the health of nodes and services.

If a node or service becomes unresponsive or experiences performance

degradation, it can be taken out of rotation until it recovers.

• Isolation and Microservices: Isolate different components of the system into

separate microservices. This way, failures in one component do not affect the

entire system, and individual services can be scaled independently.

• Caching and Content Delivery Networks (CDNs): Use caching and CDNs

to serve frequently accessed content closer to the user, reducing the load on

the main servers and improving response times.

• Auto-Scaling: Implement auto-scaling mechanisms that automatically adjust

resources based on demand. This ensures that the system can handle varying

workloads without manual intervention.

• Stateless Services: Design services to be stateless as much as possible.

Stateless services are easier to scale and recover, as they don't rely on

maintaining specific server states.

By combining these strategies and tailoring them to the specific requirements of the

distributed system, high availability can be achieved, ensuring that the system

remains operational and responsive even in the presence of failures and challenges.

7) What are the relationship between parent and child transaction in DS?

Write the problems of locking with the solutions to avoid it.

Ans: In a distributed database or distributed system, transactions often involve

multiple operations that need to be executed together in a coordinated manner. These

operations might be related hierarchically, leading to the concept of parent and child

transactions.

Parent and child transactions refer to a hierarchical relationship between

transactions. A parent transaction is a higher-level transaction that encapsulates one

or more child transactions. Child transactions are nested within the parent

transaction. The parent transaction can be thought of as a wrapper that groups and

manages the execution of its child transactions.

 For example, in a distributed database scenario, a parent transaction might involve

updating an account balance and transferring funds between accounts. The child

transactions within this parent transaction could be updating the balance of the

sender's account and the receiver's account.

 The relationship between parent and child transactions is essential for maintaining

data integrity and consistency in a distributed environment. If a parent transaction

fails or is rolled back, it should ensure that the associated child transactions are also

rolled back to maintain data consistency.

 Problems of Locking in Distributed Systems and Solutions:

Locking is a common technique used to manage concurrent access to shared

resources in distributed systems. However, locking can lead to various problems that

need to be addressed to ensure data consistency and efficient system operation:

1. Deadlocks: Deadlocks occur when two or more transactions are waiting for

resources held by each other, leading to a circular waiting condition. Deadlocks can

cause transactions to stall indefinitely.

Solution: Implement deadlock detection and resolution mechanisms. Techniques

like timeout-based approaches or resource allocation graph algorithms can help

identify and break deadlocks.

2. Lock Contention: High lock contention occurs when multiple transactions are

competing for the same resources, leading to performance degradation due to

frequent lock acquisitions and releases.

Solution: Use fine-grained locking and avoid locking large portions of data.

Optimistic concurrency control techniques, such as timestamp-based ordering, can

help reduce lock contention.

3. Locking Overhead: Locking introduces additional overhead due to the need to

acquire and release locks, leading to reduced system performance.

Solution: Use lock-free data structures and algorithms wherever possible. Opt for

optimistic concurrency control mechanisms that allow transactions to proceed

independently until they need to be synchronized.

4. Isolation Levels: Different isolation levels (e.g., Read Uncommitted, Read

Committed, Serializable) dictate the level of locking and visibility of changes across

transactions. Choosing the wrong isolation level can lead to problems like dirty

reads, non-repeatable reads, and phantom reads.

Solution: Select the appropriate isolation level based on the application's

requirements. In some cases, relaxing isolation levels can improve concurrency and

performance.

5. Lock Escalation: Lock escalation occurs when a database system converts fine-

grained locks to coarser locks to reduce overhead. This can lead to reduced

concurrency and performance.

Solution: Employ dynamic lock escalation mechanisms that consider the workload

and resource usage patterns. Avoid overly aggressive lock escalation strategies.

6. Lock Durations: Holding locks for an extended period can lead to contention and

decrease system throughput.

Solution: Minimize the duration for which locks are held. Use techniques like

deadlock detection to release locks held by stalled transactions.

While locking is essential for ensuring data consistency in distributed systems, it

introduces challenges such as deadlocks, lock contention, and overhead. Solutions

involve a combination of well-designed locking strategies, appropriate isolation

levels, and concurrency control mechanisms to mitigate these issues and maintain

system performance and data integrity.

8) How do you avoid faults in DS? Compare independent checkpointing

with coordinated checkpointing approach.

Ans: Avoiding faults in distributed systems is a complex task that involves various

strategies and techniques to ensure system reliability, availability, and fault

tolerance. While complete avoidance of faults is not always possible, minimizing

their impact and ensuring system recovery are essential. Two common approaches

to enhance fault tolerance in distributed systems are independent checkpointing and

coordinated checkpointing.

Independent Checkpointing:

Independent checkpointing is a fault tolerance technique where individual processes

or nodes in a distributed system take periodic checkpoints of their own state

independently without coordinating with other processes. Each process saves its

state to stable storage at its own pace.

Coordinated Checkpointing:

Coordinated checkpointing involves a coordinated effort among processes to take

checkpoints simultaneously. Processes coordinate their checkpointing activities to

ensure that they reach a consistent global state.

Comparison:

• Consistency: Coordinated checkpointing ensures a consistent global state,

while independent checkpointing can lead to an inconsistent state during

recovery.

• Rollback: Coordinated checkpointing minimizes rollback propagation,

whereas independent checkpointing can result in larger-scale rollbacks.

• Coordination Overhead: Independent checkpointing has lower coordination

overhead, but coordinated checkpointing has higher coordination and

communication overhead.

• Recovery Time: Coordinated checkpointing leads to controlled recovery with

shorter rollback propagation, whereas independent checkpointing might have

longer recovery times due to inconsistent states.

• Implementation Complexity: Independent checkpointing is simpler to

implement, while coordinated checkpointing requires synchronization

mechanisms.

9) Write short notes on:

a) Monolithic and Micro-Kernel:

Monolithic Kernel:

A monolithic kernel is a traditional operating system architecture where the entire

operating system and its components are tightly integrated into a single, large

executable. In a monolithic kernel, all system services, device drivers, file systems,

memory management, and other functionalities run in the same address space as the

kernel itself.

Advantages:

• Performance: Monolithic kernels typically have lower overhead because

they avoid the inter-process communication (IPC) required in micro-kernel

architectures.

• Simplicity: Developing and maintaining a monolithic kernel can be simpler

since all components are tightly integrated.

• Efficient Communication: Communication between kernel components is

direct and efficient due to their close proximity.

Disadvantages:

• Limited Modularity: Changes in one part of the kernel can affect other parts,

leading to potential bugs and complexities.

• Scalability: Monolithic kernels can become less efficient as the system scales,

leading to potential performance bottlenecks.

• Reliability: A bug in one part of the kernel can crash the entire system,

reducing system reliability.

Micro-Kernel:

A micro-kernel architecture is an alternative to the monolithic approach. In a micro-

kernel system, the core functionalities such as memory management, basic IPC, and

scheduling are kept in the kernel space, while other services and drivers are moved

to user space as separate processes.

Advantages:

• Modularity: Micro-kernels offer higher modularity as individual services and

drivers run in user space, allowing easier updates and maintenance.

• Reliability: Faults in user-level components are less likely to crash the entire

system, improving system reliability.

• Scalability: Micro-kernels can be more scalable as many services run in user

space, reducing kernel complexity.

• Customizability: Users can choose and load only the required services,

reducing the attack surface and optimizing resource usage.

b)Services provided by CORBA with the functions of Object Adapter:

CORBA is a middleware technology that enables communication between

distributed objects across different programming languages and platforms. It

provides a set of services to facilitate remote method invocation and interaction

between objects in a distributed system. Some of the key services provided by

CORBA are:

• Object Request Broker (ORB): The ORB is the core component of CORBA

that handles communication between distributed objects. It marshals and

unmarshals method calls and parameters, manages object references, and

routes requests to the appropriate objects.

• Interface Definition Language (IDL): IDL is a language-neutral way to define

the interfaces of objects in a distributed system. It allows developers to specify

the methods, data types, and communication protocols that objects will use to

interact.

• Object Services: CORBA provides a range of standard services that can be

used by distributed objects, such as naming, trading, event notification, and

persistence.

• Life Cycle Services: These services manage the creation, deletion, and

activation of objects in a distributed environment.

• Naming Service: The naming service allows objects to be registered with and

looked up by name, providing a way to locate objects dynamically.

• Trading Service: The trading service enables clients to locate objects based on

their properties and interfaces, making it easier to find and use distributed

components.

The Object Adapter is a component within the CORBA ORB that provides an

interface between the client and the server objects. It is responsible for the following

functions:

• Object Activation and Deactivation: The Object Adapter manages the

activation and deactivation of objects in response to client requests. It

activates objects when they are needed and deactivates them when they are no

longer in use, optimizing resource usage.

• Object Reference Handling: The Object Adapter handles object references,

allowing clients to transparently invoke methods on remote objects as if they

were local. It marshals and unmarshals parameters and results during remote

method calls.

• Implementation Hiding: The Object Adapter hides the implementation details

of objects from clients. Clients interact with objects through their interfaces

defined in the IDL, and the Object Adapter handles the mapping of method

calls to the actual object implementations.

• Request Forwarding: When a client invokes a method on a remote object, the

Object Adapter forwards the request to the appropriate object instance,

managing the routing of requests and responses.

c)Two Phase Distributed Commit:

Two-Phase Commit (2PC) is a distributed algorithm used to achieve consensus

among multiple participants (nodes or processes) in a distributed system regarding

whether to commit or abort a transaction. It ensures that all participants agree on the

outcome of a distributed transaction, ensuring data consistency and integrity across

the system.

The 2PC algorithm consists of two phases: the preparation phase and the

commitment phase. Here's how the algorithm works:

Preparation Phase:

• The transaction coordinator (usually the initiator of the transaction) sends a

prepare message to all participants, asking them to vote on whether they can

commit the transaction or not.

• Participants receive the prepare message and internally decide whether they

can commit the transaction. If everything is in order, they vote "YES." If

there's an issue (e.g., resource unavailability), they vote "NO."

• Participants reply to the coordinator with their votes.

Commitment Phase:

• Based on the received votes, the coordinator determines the final decision for

the transaction. If all participants voted "YES," the coordinator sends a

commit message to all participants. If any participant voted "NO," the

coordinator sends an abort message.

• Participants receive the commit or abort message and act accordingly:

• If they received a commit message, they commit the transaction and release

any locks held.

• If they received an abort message, they roll back the transaction and release

any locks held.

d) Distributed Debugging:

Distributed debugging is the process of identifying, diagnosing, and resolving issues

in a distributed system. It involves identifying the root causes of failures, anomalies,

or unexpected behaviors that arise due to the complexity of interactions among

multiple components across different nodes and networks. Distributed debugging

tools and techniques provide insights into the system's internal state, message flows,

and resource usage to help developers locate and fix errors. Techniques such as

distributed logging, distributed tracing, and snapshot capture aid in collecting and

analyzing information across multiple nodes. While distributed debugging can be

challenging due to the lack of a single execution context and the potential for non-

deterministic behavior, it plays a critical role in maintaining the reliability and

performance of complex distributed systems.

e) RPC communication semantics:

Remote Procedure Call (RPC) communication semantics define how remote calls

between distributed components behave in terms of order, reliability, and error

handling. There are three primary RPC communication semantics:

• At Most Once (AMO): In this semantics, the RPC system guarantees that a

remote procedure will be executed at most once. If a caller sends an RPC

request, the system ensures that the request is executed on the remote server.

If a response is lost or there's a network error, the system will retry the request.

This approach guarantees that a remote procedure will not be executed more

than once, ensuring idempotence. However, there is a possibility that some

valid requests might be missed if a response is lost.

• At Least Once (ALO): In this semantics, the RPC system guarantees that a

remote procedure will be executed at least once. If a caller sends an RPC

request and does not receive a response, it will retry the request. The remote

server needs to handle duplicate requests and ensure idempotence to avoid

executing the same operation multiple times. This approach ensures that no

valid request is lost, but it can lead to duplicate executions.

• Exactly Once (EO): This is the most stringent semantics, ensuring that a

remote procedure is executed exactly once, even in the presence of failures or

retries. Achieving exactly once semantics can be complex, especially in

distributed systems. It requires mechanisms for detecting duplicates and

maintaining the state to prevent redundant executions.

