
2071-CHAITRA REGULAR

1. "Distributed system acts as a single coherent system to its end user" justify the

statement with its features and challenges.

A distributed system is designed to provide the illusion of a single coherent system to its

end users, despite being composed of multiple interconnected and independent

components. This illusion is maintained through various features and mechanisms that

ensure consistent behavior and seamless interaction. However, achieving this goal comes

with its own set of challenges.

Features:

 Transparency: A distributed system aims to hide the complexities of its underlying

architecture from end users. Different types of transparency, such as location

transparency (users don't need to know where data is located), access transparency

(users access data in a consistent manner regardless of its location), and failure

transparency (users are shielded from system failures), contribute to the coherent

user experience.

 Interconnectedness: Distributed systems connect multiple devices, nodes, or

computers over a network. Communication mechanisms, such as remote procedure

calls (RPCs) or message passing, allow users to interact with various parts of the

system as if they were all part of a single entity.

 Scalability: Distributed systems can scale horizontally by adding more nodes to

accommodate increasing demands. This scalability allows the system to handle

larger user loads and data volumes while maintaining the illusion of a single system.

 Fault Tolerance: To ensure reliability, distributed systems often implement fault

tolerance mechanisms. Replication, where data is stored on multiple nodes, and

redundancy, where backup components are available to take over in case of failure,

help maintain the coherent experience by minimizing disruptions.

Challenges:

 Network Communication: Ensuring consistent and reliable communication

between distributed components can be challenging due to factors like latency,

2071-CHAITRA REGULAR

bandwidth limitations, and potential packet loss. This can lead to delays or

inconsistencies in the user experience.

 Data Consistency: Maintaining data consistency across multiple nodes is complex.

Synchronization mechanisms, like distributed transactions or consensus protocols,

are necessary to ensure that data remains accurate and coherent even in the face of

failures.

 Concurrency Control: When multiple users or components access shared

resources simultaneously, concurrency control mechanisms are required to prevent

conflicts and maintain data integrity. These mechanisms can introduce complexity

and potential performance bottlenecks.

 Failure Management: Handling node failures and maintaining system availability

is crucial. Implementing techniques like replication and failover introduces

complexity to ensure that the system remains coherent even when parts of it are

temporarily unavailable.

 Scalability Complexity: While distributed systems offer scalability, managing a

growing number of nodes and resources requires careful design and management.

Ensuring that the system scales without sacrificing performance or introducing new

points of failure can be challenging.

 Security and Privacy: Distributed systems often involve transmitting data across

networks, which raises concerns about security and privacy. Ensuring secure

communication, access control, and data encryption are essential to maintain user

trust and the illusion of a single coherent system.

In conclusion, the statement that a distributed system acts as a single coherent system to its

end users is justified by the features and challenges inherent to such systems. The features

enable the system to provide a seamless user experience, while the challenges highlight the

complexities involved in achieving this goal, from communication and data consistency to

fault tolerance and security.

Fundamental Model: A fundamental model is an abstract representation or theoretical

framework that defines the basic principles, concepts, and interactions that guide the

design, analysis, and understanding of distributed computing environments. This model

2071-CHAITRA REGULAR

provides a structured approach to conceptualize the behavior, communication patterns, and

relationships among different components within a distributed system.

2. What is DFS? How RMI perform communication between distributed objects?

Explain.

Distributed File System (DFS): A Distributed File System is a networked file system that

allows multiple users or applications across different machines to access and share files as

if they were stored on a local file system. DFS abstracts the physical locations of files and

provides a unified view of the distributed storage space.

Remote Method Invocation (RMI) is a Java technology that allows objects to invoke

methods on other objects that are located in different Java Virtual Machines (JVMs). This

is done by using a stub and skeleton mechanism. The stub is an object that is created on

the client side. It acts as a proxy for the remote object. When the client invokes a method

on the stub, the stub packages the method call and sends it to the server. The skeleton is an

object that is created on the server side. It receives the method call from the stub and

executes the method on the remote object. The skeleton then returns the result of the

method call to the stub, which in turn returns it to the client.

The RMI communication between distributed objects works as follows:

1. The client creates a stub object for the remote object.

2. The client invokes a method on the stub object.

2071-CHAITRA REGULAR

3. The stub packages the method calls and sends it to the server.

4. The skeleton on the server receives the method call and executes it on the remote object.

5. The skeleton returns the result of the method call to the stub.

6. The stub returns the result of the method call to the client.

This process is transparent to the client, which makes it appear as if the remote object is

local.

Here are some of the advantages of using RMI for communication between distributed

objects:

 It is easy to use. The RMI API is very similar to the Java standard library API, so

it is easy for developers to learn and use.

 It is efficient. RMI uses a variety of techniques to optimize the performance of

remote method invocations, such as caching and compression.

 It is reliable. RMI provides a number of features to ensure the reliability of remote

method invocations, such as retries and timeouts.

 It is secure. RMI supports a variety of security features, such as authentication and

authorization.

Overall, RMI is a powerful and versatile technology that can be used to facilitate

communication between distributed objects in a variety of applications.

3. Verify with proper explanations that DNS is a distributed hierarchical database

system.

The Domain Name System (DNS) is a distributed hierarchical database system that maps

domain names to IP addresses. It is used to translate human-readable domain names into

the numerical IP addresses that computers use to communicate with each other.

DNS is a distributed system because it is composed of a network of name servers that are

located all over the world. Each name server is responsible for a certain portion of the DNS

namespace. When a client needs to resolve a domain name, it sends a query to the nearest

2071-CHAITRA REGULAR

name server. The name server then queries other name servers as needed until it finds the

answer.

DNS is also a hierarchical system. The DNS namespace is divided into a hierarchy of

domains, with each domain having a parent domain. The top of the hierarchy is the root

domain, which is represented by the single dot (.). The root domain has two child domains:

.com and .net. These domains, in turn, have child domains, and so on.

The hierarchical structure of DNS makes it efficient to store and manage a large number

of domain names. Each name server only needs to store information about the domains that

it is responsible for. This reduces the amount of traffic on the network and makes it faster

to resolve domain names. The distributed and hierarchical nature of DNS makes it a reliable

and scalable system. If one name server fails, other name servers can still resolve domain

names. This makes DNS a critical part of the Internet infrastructure.

Some additional points that support the claim that DNS is a distributed hierarchical

database system:

 DNS is a distributed system because it is composed of a network of name servers

that are located all over the world. This means that no single point of failure can

bring down the entire DNS system.

 DNS is a hierarchical system because the DNS namespace is divided into a

hierarchy of domains. This makes it easy to organize and manage a large number

of domain names.

 DNS is a database because it stores information about domain names and their

corresponding IP addresses. This information is used to translate domain names

into IP addresses, which is necessary for computers to communicate with each other

on the Internet.

4. Write the importance of election algorithm. Explain BULLY algorithm with suitable

example. Compare it with Ring based algorithm

2071-CHAITRA REGULAR

Election algorithms in distributed systems play a crucial role in selecting a leader or

coordinator among a group of nodes. This leader node is responsible for making decisions,

coordinating actions, and maintaining system stability. There are several advantages to

using election algorithms in distributed systems:

Fault Tolerance: In a distributed system, nodes can fail due to various reasons such as

hardware failures, network issues, or software errors. An election algorithm ensures that if

the current leader node fails, a new leader can be elected quickly. This promotes fault

tolerance and helps maintain the system's functionality even in the presence of failures.

Load Balancing: Election algorithms can be designed to distribute the workload evenly

among nodes. By electing a new leader based on factors such as the current load of each

node, the system can balance the processing and communication load, preventing any

single node from becoming overwhelmed.

Coordination: A leader or coordinator node helps manage and coordinate various tasks

within the distributed system. By electing a leader, the system can avoid conflicts and

ensure that tasks are performed in a synchronized and organized manner.

Reduced Communication: Election algorithms typically involve communication between

nodes to determine the new leader. However, once a leader is elected, it can reduce the

need for constant communication between all nodes for decision-making. Instead, nodes

can communicate with the leader, simplifying the overall communication structure.

Efficient Decision Making: Having a single leader can expedite decision-making processes

in the system. The leader can make critical choices without requiring consensus from all

nodes, which can help streamline operations and reduce delays.

Consistency and Replication: In systems that use replication for data consistency and fault

tolerance, a centralized leader can help maintain consistency by coordinating data updates

across replicas. This ensures that all nodes have a consistent view of the data.

 BULLY ALGORITHM

This algorithm was proposed by Garcia-Molina.

When the process notices that the coordinator is no longer responding to requests, it

initiates an election. A process, P, holds an election as follows:

2071-CHAITRA REGULAR

(I) P sends an ELECTION message to all processes with higher numbers.

(II) If no one responds, P wins the election and becomes the coordinator.

(III) If one of the higher-ups’ answers, it takes over. P’s job is done.

a) A process can get an ELECTION message at any time from one of

its lower numbered colleagues.

b) When such a message arrives, the receiver sends an OK message

back to the sender to indicate that he is alive and will take over. The receiver

then holds an election, unless it is already holding one.

c) All processes give up except one that is the new coordinator. It

announces its victory by sending all processes a message telling them that

starting immediately it is the new coordinator.

d) If a process that was previously down comes back up, it holds an

election. If it happens to the highest numbered process currently running, it

will win the election and take over the coordinator’s job. Thus, the biggest

guy in town always wins, hence the name “bully algorithm”.

e) Example:

Comparison of Bully algorithm and Ring based Algorithm

2071-CHAITRA REGULAR

Feature Bully Algorithm Ring based Algorithm

Assumptions

All nodes have unique

priority numbers.

Nodes are arranged in a logical

ring.

Election

process

When a node detects that the

coordinator has failed, it

sends an ELECTION

message to all nodes with

higher priority numbers. The

node with the highest

priority number that

responds to the ELECTION

message becomes the new

coordinator.

When a node detects that the

coordinator has failed, it sends an

ELECTION message to its

successor in the ring. If the

successor is down, the sender

skips over the successor and sends

the ELECTION message to the

next node in the ring. This process

continues until a node is found that

is up and running. The node that

receives the ELECTION message

first becomes the new coordinator.

Efficiency

More efficient than the Ring

based algorithm.

Less efficient than the Bully

algorithm.

Fault-

tolerance

Less fault-tolerant than the

Ring based algorithm.

More fault-tolerant than the Bully

algorithm.

5. List the goals of JINI. What are CORBA services? How does operating system

support for distributed system?

 JINI is a Java-based technology developed by Sun Microsystems (now Oracle) to

create distributed systems in a network environment. It allows devices and services to

dynamically join and leave a network, forming a flexible and adaptive distributed

environment.

2071-CHAITRA REGULAR

 Ease of Use: Jini aims to make the creation and interaction of distributed services as

easy as using local services. It provides a simple programming model that abstracts

the complexities of distributed computing, allowing developers to focus on the

business logic rather than the intricacies of network communication.

 Dynamic Discovery: Jini promotes the concept of dynamic service discovery. Services

register themselves with the network, and clients can dynamically discover and use

these services without prior knowledge of their locations.

 Network Mobility: Jini supports mobility in a network by allowing services to be

moved from one location to another without causing disruptions to clients. Clients

can access services irrespective of their physical location, promoting flexibility and

adaptability.

 Interoperability: Jini services can be written in any language as long as they adhere to

the Jini programming model. This enables heterogeneous systems to work together

seamlessly.

 Security: Jini provides mechanisms for secure communication and authentication

between services and clients. This helps protect sensitive data and prevent

unauthorized access.

 Scalability: Jini's architecture is designed to handle large-scale distributed systems

with ease. The dynamic discovery and mobility features allow the system to scale up

or down as needed.

 Fault Tolerance: Jini supports fault tolerance by enabling services to reappear in the

network after recovering from failures. This ensures that critical services are always

available even in the face of hardware or software failures.

CORBA (Common Object Request Broker Architecture) is a middleware platform that allows

distributed objects to communicate with each other. CORBA services are a set of standard

services that are provided by CORBA implementations.

CORBA services are:

2071-CHAITRA REGULAR

a) Naming service: Provides a directory of objects in a distributed system.

b) Event service: Provides a way for objects to subscribe to and receive events from other

objects.

c) Transaction’s service: Provides a way for objects to ensure that a set of operations are

performed atomically.

d) Security service: Provides a way for objects to authenticate each other and to encrypt

their communications.

e) Concurrency Control Service: Helps manage concurrency and synchronization issues in a

distributed environment.

Operating system support for distributed systems:

a) Operating systems provide a variety of features that support distributed systems,

including:

b) Networking support: Provides a way for computers to communicate with each other over

a network.

c) Process management: Provides a way for the operating system to manage the execution

of multiple processes on a single computer.

d) Memory management: Provides a way for the operating system to manage the memory of

multiple processes.

e) File system: Provides a way for multiple processes to access files on a shared disk.

f) Security: Provides a way to protect data and resources from unauthorized access.

6. Explain Byzantine general problem to handle faulty process with example. Describe

any one failure recovery technique.

The Byzantine Generals Problem (BGP) is a theoretical problem in computer science that

asks how a group of unreliable computers can reach a consensus on a decision, even if

some of the computers are Byzantine, meaning that they may behave arbitrarily and

maliciously. The problem is named after a thought experiment in which a group of

Byzantine generals are camped outside an enemy city. The generals need to decide whether

to attack the city, but they cannot communicate directly with each other. Instead, they must

communicate through messengers.

2071-CHAITRA REGULAR

If all of the generals are loyal, then they can easily reach a consensus on whether to attack.

However, if even one of the generals is Byzantine, then the problem becomes much more

difficult. The Byzantine general could send false messages to the other generals, in an

attempt to sow discord and prevent them from reaching a consensus.

One way to solve the Byzantine Generals Problem is to use a voting algorithm. In a voting

algorithm, each general vote on whether to attack or retreat. If a majority of the generals

vote to attack, then the attack proceeds. However, if a majority of the generals vote to

retreat, then the attack is canceled. The voting algorithm can be made more robust to

Byzantine failures by using a quorum system. A quorum is a set of generals that is large

enough to make a decision, even if some of the generals are Byzantine. For example, a

quorum of three generals would be sufficient, even if one of the generals is Byzantine.

Another way to solve the Byzantine Generals Problem is to use a consensus algorithm. A

consensus algorithm is a more sophisticated algorithm that takes into account the

possibility of Byzantine failures. Consensus algorithms typically require more

communication between the generals, but they can be more robust to Byzantine failures.

Failure recovery is the process of detecting and recovering from failures in a distributed

system. Failures can occur in any part of a distributed system, including the hardware,

software, and network. Failure recovery techniques are used to ensure that the system

continues to function even in the event of a failure.

There are a variety of failure recovery techniques, including:

a) Checkpointing: Checkpointing is a technique for periodically saving the

state of a system. If a failure occurs, the system can be restored to its last checkpointed

state.

b) Replication: Replication is a technique for duplicating data and processes

across multiple nodes in a system. If a node fails, the data and processes can be restored

from the replicas.

2071-CHAITRA REGULAR

c) Reconfiguration: Reconfiguration is a technique for dynamically changing

the configuration of a system in response to a failure. For example, if a node fails, the

system can be reconfigured to distribute the load of the failed node to the remaining nodes.

d) Fault tolerance: Fault tolerance is a technique for designing a system to be

able to withstand failures. Fault-tolerant systems typically use a combination of techniques,

such as checkpointing, replication, and reconfiguration.

7. Explain with algorithmic steps, how token ring algorithm works for mutual exclusion

in distributed system.

The Token Ring algorithm is a distributed mutual exclusion algorithm that allows

processes in a distributed system to access a shared resource in a coordinated and

synchronized manner. The algorithm employs a "token," which is a special message that

circulates among the processes. A process holding the token has the right to access the

shared resource, ensuring that only one process can access the resource at a time. Here's

how the Token Ring algorithm works with algorithmic steps:

Initialization:

 Each process is assigned a unique identifier.

 The processes are organized in a logical ring topology, where each process is

connected to its neighbors.

Token Creation and Circulation:

 A token is initially created and assigned to a designated process (usually the process

with the lowest identifier).

 The token circulates among the processes in a predetermined order, usually in the

direction of increasing process identifiers.

Process Request for Mutual Exclusion:

2071-CHAITRA REGULAR

 When a process wants to access the shared resource, it waits until it receives the

token.

Token Handling by the Requesting Process:

 When a process holding the token receives a request for mutual exclusion, it

releases the token and forwards it to the next process in the ring.

Token Reception and Resource Access:

 The requesting process receives the token and gains the right to access the shared

resource.

 It performs its critical section (accesses the shared resource) while holding the

token.

Exiting Critical Section and Token Forwarding:

 After the critical section, the process releases the token and forwards it to the next

process in the ring.

Token Circulation Continues:

 The token continues to circulate among the processes, and other processes waiting

for mutual exclusion will eventually receive the token and access the resource.

Termination:

 The processes can continue to request mutual exclusion as needed, and the token

will circulate as long as there are processes requesting access.

2071-CHAITRA REGULAR

The Token Ring algorithm ensures that only one process at a time can hold the token and

access the shared resource. This guarantees mutual exclusion and prevents concurrent

access to the critical section. The Algorithm also ensures fairness by giving each process

an equal opportunity to access the shared resource.

8. Define lock in concurrency control. How can concurrency be controlled in distributed

transaction? What situation does lead to distributed deadlock?

A lock is a synchronization mechanism used to coordinate access to shared resources in a

multi-threaded or multi-process environment. Locks help prevent multiple threads or

processes from simultaneously accessing the same resource, which could lead to data

corruption or inconsistent results. Locks are used to enforce mutual exclusion, ensuring

that only one thread or process can access a critical section of code or a shared resource at

a time.

There are two types of locks used in concurrency control:

Shared Lock (Read Lock): This type of lock allows multiple threads or processes to access

a resource simultaneously for read-only operations. It's used when multiple entities can

safely read the same data concurrently without causing conflicts.

Exclusive Lock (Write Lock): This type of lock ensures exclusive access to a resource,

preventing any other thread or process from accessing it, even for read operations. It's used

when a thread or process intends to modify the data, preventing other threads or processes

from accessing the data simultaneously and causing inconsistencies.

In distributed transactions, concurrency control becomes even more complex due to the

presence of multiple nodes, potentially distributed across different machines or locations.

Controlling concurrency in a distributed transaction involves maintaining the ACID

properties (Atomicity, Consistency, Isolation, Durability) while allowing multiple

transactions to proceed concurrently. Concurrency can be controlled in the following

manner:

Two-Phase Locking (2PL): This technique ensures that transactions acquire locks in two

phases - an expanding phase (locks are acquired) and a shrinking phase (locks are released).

It guarantees serializability and helps prevent conflicts between transactions.

2071-CHAITRA REGULAR

Timestamp Ordering: Transactions are assigned timestamps based on their start times. A

transaction can proceed only if its timestamp is the smallest among conflicting transactions'

timestamps. This approach ensures that transactions are executed in a serializable order.

Concurrency Control Protocols: Distributed databases implement protocols like

Serializable Snapshot Isolation (SSI) or Serializable Snapshot Database (SSD) to ensure

serializability of transactions while allowing for concurrency.

 Distributed deadlocks occur when two or more transactions, each holding locks on

resources that the other transaction needs, are unable to proceed. In a distributed

environment, a deadlock can arise due to:

Circular Wait: Each transaction is waiting for a resource held by another transaction in a

circular manner, creating a deadlock.

Communication Delays: In a distributed system, network delays or communication

failures can lead to situations where transactions appear to be deadlocked even though they

are not.

Inconsistent Locking: Inconsistent locking protocols or a lack of coordination between

different nodes can result in distributed deadlocks.

9. Write short notes on Heterogeneity in distributed system.

Heterogeneity in a distributed system refers to the coexistence of a diverse range of

components, encompassing varying hardware configurations, operating systems,

programming languages, and communication protocols. This diversity creates challenges

while also presenting opportunities for building robust and adaptable systems. Such

systems consist of a mix of devices and technologies due to reasons such as legacy systems,

specific functional needs, or preferences for certain hardware platforms.

Interoperability is major concern in heterogeneous environments as seamless

communication and collaboration among disparate components require addressing

differing communication protocols, data formats, and encoding schemes.

Middleware solutions play a pivotal role in managing this complexity by offering a layer

of abstraction that conceals the underlying differences and provides standardized interfaces

for interaction. Adaptation and translation mechanisms come into play to facilitate

2071-CHAITRA REGULAR

communication between components that operate on distinct protocols or handle data in

dissimilar formats.

In addition to technical challenges, managing performance and scalability becomes critical

as components may exhibit varying processing capabilities. Resource management and

load balancing strategies are employed to optimize the overall performance of

heterogeneous systems. Despite the complexities, heterogeneity also brings flexibility and

innovation. Organizations can select components that best suit their requirements, and the

integration of new technologies is possible without necessitating an overhaul of the entire

system. While heterogeneity enhances system capabilities, it also amplifies design,

development, and maintenance intricacies, demanding careful debugging, troubleshooting,

and security measures.

10. Write short notes on Rendezvous concept and implementation.

The rendezvous concept is a fundamental synchronization mechanism in concurrent

computing that ensures coordinated interactions between multiple processes or threads. It

involves orchestrating processes to meet at a predetermined point in their execution before

proceeding further. This coordination is often achieved using synchronization primitives

like semaphores. For instance, consider two processes, A and B, needing to synchronize

their actions. Process A performs some initial computations, signals its readiness by

releasing a semaphore, and then waits on another semaphore for Process B. Similarly,

Process B follows a similar sequence: it performs its tasks, signals its readiness, and then

awaits the signal from Process A. Only when both processes have signaled and are waiting

for each other, the semaphores allow them to proceed concurrently. This mechanism is

crucial in scenarios where specific order and synchronized interaction among concurrent

entities are necessary, such as in parallel algorithms, producer-consumer problems, or

distributed communication patterns. Rendezvous helps prevent race conditions, ensure

orderly execution, and maintain the desired sequence of operations in a concurrent

environment.

11. Write short notes on Flat versus nested locks.

2071-CHAITRA REGULAR

Flat Locks:Flat locks, often referred to as simple locks, provide a direct and flexible

approach to concurrency management. In this model, threads or processes can individually

acquire locks, granting control over fine-grained synchronization. While their simplicity is

advantageous, they demand meticulous consideration of the sequence in which locks are

acquired and released to avoid potential deadlocks. Flat locks are best suited for scenarios

where granularity is paramount, and the risk of deadlocks can be mitigated through well-

defined coding practices and coordination efforts.

Nested Locks:Nested locks introduce a structured hierarchy into the locking mechanism,

ensuring a predefined order for acquiring locks. When a higher-level lock is obtained, it

inherently encapsulates all subordinate locks within its hierarchy. This design inherently

thwarts deadlock scenarios by virtue of its regulated lock acquisition sequence. However,

the application of nested locks entails the navigation of a more complex management

process for the hierarchy, and their usage may introduce performance overhead due to the

requirement of acquiring locks hierarchically. Nested locks find their stride in situations

necessitating meticulous lock acquisition sequencing to prevent deadlocks, although their

implementation and upkeep may involve a greater level of complexity.

12. Write short notes on Process Resilience.

Process resilience refers to the ability of a system's individual processes to withstand and

recover from various failures, errors, or disruptions without compromising the overall

functionality of the system. In a distributed computing environment, where processes can

be distributed across multiple nodes or machines, process resilience is crucial for

maintaining system availability and reliability. Resilient processes are designed to

gracefully handle scenarios such as hardware failures, software bugs, communication

errors, and resource constraints. This involves implementing fault detection mechanisms,

error recovery strategies, and strategies for handling resource allocation and contention

issues. Process resilience also encompasses strategies like checkpointing, where process

states are periodically saved to enable recovery in case of failure, and replication, where

processes are duplicated across different nodes to enhance availability. By ensuring process

2071-CHAITRA REGULAR

resilience, distributed systems can continue to operate effectively despite the presence of

failures or unexpected events, contributing to the overall stability and robustness of the

system.

Process resilience is a fundamental aspect of building reliable and fault-tolerant distributed

systems. It involves not only the design and implementation of mechanisms to handle

failures but also the proactive identification of potential vulnerabilities and weaknesses in

the system. Achieving process resilience often requires a combination of architectural

choices, coding practices, and deployment strategies. This might include designing

processes that can recover their state after a failure, implementing error-handling

mechanisms that gracefully degrade system functionality, and employing redundancy

through replication or load balancing to ensure uninterrupted service. Ultimately, process

resilience contributes to the system's ability to provide consistent and dependable services

even when confronted with unexpected challenges, bolstering user confidence and

satisfaction.

