Flat and Nested
Distributed Transaction

Prepared by: Prepared for:
Anish Raj Manandhar(THA077BCT010) Department of Electronics
Nabin Shrestha(THA077BCT026) And Computer Engineering

Prayush Bhattarai(THAO077BCT036)

Introduction to Transaction

A transaction is a series of object operations that must be done in
an ACID-compliant manner.

e Atomicity
The transaction is completed entirely or not at all.
e Consistency

It is a term that refers to the transition from one consistent state to
another.

e |solation

It is carried out separately from other transactions.
e Durability
Once completed, it is long lasting.

For Example

Transaction

YES

NO

Atomicity

Consistency

Isolation

Durability

Why Distributed Transaction?

A distributed transaction is a database transaction in which two or more
network hosts are involved.

« Some properties are harder to implement, that cannot be implemented

with simple transactions. Many times basic single-system techniques are
not sufficient.

» Distributed transactions are required when there is a need to quickly

update data that is related and spread across the multiple databases or
nodes connected in a network.

Resource 1l

Resource 2

Resource 2 acknowledges commit 3

Ask Resource 2 to commit

Resource 2 acknowledges preparation

v W A 4

Ask Resource 2 to prepare commit

Issues
Distributed
Transaction

Receives
transaction
Acknowledge

S
Application

Fig: Un-Distributed Transaction Fig: Distributed Transaction

Flat Distributed Transactions|1]

Has a single initiating point(begin) and a
single end point(Commit or abort).

Usually very simple and generally used for
short activities rather than larger ones.

A client makes requests to multiple servers in |

a flat transaction.

For eg. T is a flat transaction that performs
operations on objects in servers X, Y, and Z.

Before moving on to the next request, a flat
transaction completes the previous one. As a
result, each transaction visits the server
object in order.

Client

Flat Distributed Transactions[2]

openTransaction

participant
closeTransaction

A e a.withdraw(4);

BranchX

participant

. b.withdraw(T, 3);
Client B b.withdraw(3);
T = openTransaction
B hY
a.withdraw(4); _—
c.deposit(4); icipant
b.withdraw(3); e .
d.deposit(3); C c.deposit(4);
closeTransaction
D e d.deposit(3);
Note: the coordinator is in one of the servers, e.g. BranchX BranchZ

Servers execute requests in a distributed transaction.

 When it commits they must communicate with one another to coordinate
their actions.

« A Client starts a transaction by sending an openTransaction request to a
coordinator in any server.

— It returns a TID unique in the distributed system (eg. serveriD)
— At the end, it will be responsible for committing or aborting it.

Flat Distributed Transactions[3]

openTransaction
closeTransaction

participant
A e a.withdraw(4);

BranchX

participant

. b.withdraw(T, 3);
Client B b.withdraw(3);

T = openTransaction

a.withdraw(4); EEER
c.deposit(4); participant
b.withdraw(3); e ‘
d.deposit(3); C c.deposit(4);
closeTransaction
D e d.deposit(3);

Note: the coordinator is in one of the servers, e.g. BranchX BranchZ

« Each server managing an object accessed by the transaction is a
participant — it joins the transaction.

— A participant keeps track of objects involved in the transaction.

— At the end it cooperates with the coordinator in carrying out the
commit protocol.

* Note that a participant can call abortTransaction in coordinator.

For Example

Fig: Flat transaction(Hunger game)

Nested Transaction-[1]}

e A transaction contains other transactions.

* The nested transactions here are called
sub-transactions.

* The top-level transaction in a nested
transaction can open sub-transactions, and
each sub-transaction can open more
sub-transactions down to any depth of
nesting.

Nested Transaction-[2]}

i =
-
3'd

e Concurrent Execution of the Sub-transactions is done
which are at the same level.

* Here, in the above diagram, T1 and T2 invoke objects
on different servers and hence they can run in parallel
and are therefore concurrent.

Nested Transaction-[3]
Example: E-commerce

Parent Transaction

Deduct amount Generate order
from the bank
Sub-transaction 1 Sub-transaction 3
Update
inventory

Sub-transaction 2

Comparison

Flat Transactions:
* Single-level transactions without sub-transactions
* All operations must succeed or fail as a single unit

 Simpler structure, harder to manage complex
scenarios

Nested Transactions:
 Hierarchical transactions with sub-transactions

e Each sub-transaction can commit or rollback
independently

* Better suited for complex, distributed operations

Implementation
(Flat Transaction

import mysql.connector
from mysql.connector import errorcode

def transfer_money(cursor, from_account, to_account, amount):
try:
Check if the from account has enough balance
cursor.execute("SELECT balance FROM accounts WHERE name = %s", (from_account,))
from_balance = cursor.fetchone()[@]

if amount <= 0:
raise Exception("“Check Input field!!!")

if from_balance < amount:
raise Exception("Insufficient funds™)

Deduct the amount from from_account
cursor.execute("UPDATE accounts SET balance = balance - %s WHERE name = %s", (amount, from_account))

Add the amount to to_account
cursor.execute("UPDATE accounts SET balance = balance + %s WHERE name = %s", (amount, to_account))

except Exception as e:
print(f"Transaction failed: {e}")

return False

return True

Implementation
(Flat Transaction)

id name balance
1 Alice 1500.00

2 Bob 500.00
Committed Test Case
conn.start_transaction()

Perform the transfer
if transfer_money(cursor, 'Alice’', 'Bob', 100.00):
Commit the transaction
conn.commit()
print("Transaction committed successfully")
else:
Rollback the transaction
conn.rollback()
print("Transaction rolled back™)

Transaction committed successfully
id name

1 Alice
2 Bob

balance
1400.00

600.00

Rollback Test Case

conn.start_transaction()

Perform the transfer
if transfer_money(cursor, 'Alice', 'Bob‘, ©.00):
Commit the transaction
conn.commit()
print("Transaction committed successfully")
else:
Rollback the transaction
conn.rollback()
print("Transaction rolled back")

Transaction failed: Check Input field!!!
Transaction rolled back

Implementation
(Nested Transaction)

Function to update inventory
def update_inventory(conn, product name, quantity):
try:
cursor = conn.cursor()

Check current inventory
cursor.execute("SELECT quantity FROM inventory WHERE product _name = %s", (product_name,))

current_quantity = cursor.fetchone()[@]

Check if sufficient quantity is available
if current quantity < quantity:
raise Exception(f"Insufficient quantity available for {product name}")

Update inventory
cursor.execute("UPDATE inventory SET quantity = quantity - %s WHERE product name = %s", (quantity, product name))

cursor.close()

except Exception as e:
raise e

Implementation
(Nested Transaction

Function to process payment
def process_payment(conn, order_id, amount):
try:
cursor = conn.cursor()
Simulate payment failure
if amount <= o:
raise Exception("Invalid payment amount™)

Process payment (example: insert into payments table)
cursor.execute("INSERT INTO payments (order_id, amount) VALUES (%s, %s)", (order_id, amount))
cursor.close()
except Exception as e:
raise e
Function to record shipping information
def record shipping(conn, order_id, shipping_address):
try:
cursor = conn.cursor()
Simulate shipping failure
if not shipping_address:
raise Exception("Invalid shipping address™)

Record shipping information (example: insert into shipping table)
cursor.execute("INSERT INTO shipping (order_id, address) VALUES (%s, %s)", (order_id, shipping_address))

cursor.close()

except Exception as e:
raise e

Implementation
(Nested Transaction)

Start a transaction
conn.start_transaction()

id product_name quantity

Process each step within the transaction 100 Sneakers 15
try:
Step 1: Update inventory
update_inventory(conn, 'Sneakers', 5)

Order processed successfully.

Step 2: Process payment id product name quantity
process_payment(conn, 100, 4000) 100 Sneakers 10

Step 3: Record shipping information
record _shipping(conn, 100, 'Lazimpat')

Commit the transaction if all steps succeed
conn.commit()
print("Order processed successfully.")

except Exception as e:
conn.rollback()
print(f"Transaction failed: {e}")

THANK YOU

