
Flat and Nested
Distributed Transaction

Prepared for:
Department of Electronics

And Computer Engineering

Prepared by:
Anish Raj Manandhar(THA077BCT010)

Nabin Shrestha(THA077BCT026)
Prayush Bhattarai(THA077BCT036)

Introduction to Transaction
A transaction is a series of object operations that must be done in
an ACID-compliant manner.
• Atomicity
The transaction is completed entirely or not at all.
• Consistency
It is a term that refers to the transition from one consistent state to
another.
• Isolation
It is carried out separately from other transactions.
• Durability
Once completed, it is long lasting.

For Example
Transaction YES NO

Atomicity

Consistency

Isolation

Durability

OR

Why Distributed Transaction?
• A distributed transaction is a database transaction in which two or more

network hosts are involved.
• Some properties are harder to implement, that cannot be implemented

with simple transactions. Many times basic single-system techniques are
not sufficient.

• Distributed transactions are required when there is a need to quickly
update data that is related and spread across the multiple databases or
nodes connected in a network.

Fig: Distributed TransactionFig: Un-Distributed Transaction

Flat Distributed Transactions[1]
• Has a single initiating point(begin) and a

single end point(Commit or abort).
• Usually very simple and generally used for

short activities rather than larger ones.

• A client makes requests to multiple servers in
a flat transaction.

• For eg. T is a flat transaction that performs
operations on objects in servers X, Y, and Z.

• Before moving on to the next request, a flat
transaction completes the previous one. As a
result, each transaction visits the server
object in order.

Flat Distributed Transactions[2]

Servers execute requests in a distributed transaction.
• When it commits they must communicate with one another to coordinate

their actions.
• A Client starts a transaction by sending an openTransaction request to a

coordinator in any server.
– It returns a TID unique in the distributed system (eg. serverID)
– At the end, it will be responsible for committing or aborting it.

Flat Distributed Transactions[3]

• Each server managing an object accessed by the transaction is a
participant – it joins the transaction.
– A participant keeps track of objects involved in the transaction.
– At the end it cooperates with the coordinator in carrying out the

commit protocol.
• Note that a participant can call abortTransaction in coordinator.

For Example

Fig: Flat transaction(Hunger game)

Nested Transaction-[1]

• A transaction contains other transactions.

• The nested transactions here are called
sub-transactions.

• The top-level transaction in a nested
transaction can open sub-transactions, and
each sub-transaction can open more
sub-transactions down to any depth of
nesting.

Nested Transaction-[2]

• Concurrent Execution of the Sub-transactions is done
which are at the same level.

• Here, in the above diagram, T1 and T2 invoke objects
on different servers and hence they can run in parallel
and are therefore concurrent.

Nested Transaction-[3]
Example: E-commerce

Parent Transaction

Deduct amount
from the bank

Update
inventory

Generate order

Sub-transaction 1

Sub-transaction 2

Sub-transaction 3

Comparison

Flat Transactions:
• Single-level transactions without sub-transactions
• All operations must succeed or fail as a single unit
• Simpler structure, harder to manage complex

scenarios
Nested Transactions:
• Hierarchical transactions with sub-transactions
• Each sub-transaction can commit or rollback

independently
• Better suited for complex, distributed operations

Implementation
(Flat Transaction)

Implementation
(Flat Transaction)

Committed Test Case

Rollback Test Case

Implementation
(Nested Transaction)

Implementation
(Nested Transaction)

Implementation
(Nested Transaction)

THANK YOU

