
The MACH Kernel: Architecture
and Features

-Nikhil Pradhan
-Nistha Bajracharya
-Prinsa Joshi
-Samman Babu Amgain

Distributed System

-Er. Anku Jaiswal

Content
Introduction to MACH

Evolution of MACH

Mach Goals

Basic Architecture of MACH

Main MACH Abstractions

Features of MACH

Process Management

Inter-Process Communication

Memory Management

Other Versions of MACH

Conclusion

What is MACH?

Microkernel-based operating system design that separates the
kernel's essential functions from less critical services.

In a distributed system, MACH microkernel allows the distribution of
these essential functions across multiple nodes, enhancing fault
tolerance and scalability while promoting modularity and flexibility in
the system.

Fig: Mach Microkernel

Evolution of
MACH

FIRST VERSION: 1986
FOR VAX 11/784, A

FOVR, CPU
MULTIPROCESSOR.

SHORTLY
THEREAFTER, PART TO
IBM PC/RT AND SUN B

WERE DONE.

BY 1987 MACH WAS
ALSO RUNNING ON THE
ENCORE AND SEQUENT

MULTIPROCESSOR.

AS 1988, THE MACH 25
KERNEL WAS LARGE

AND MONOLITHIC, DUE
TO PRESENCE OF

LARGE AMOUNT OF
BERKELEY'S CODE.

CMU REMOVED ALL
BERKELEY CODE FROM
THE KERNEL AND PUT

IT USER SPACED.

MACH
Goals

Providing a base for building other operating
systems (e.g. UNIX)

Transparent Access to network resources

Supporting large sparse address space

Heterogeneous system support

Portability

Basic Architecture of MACH
- MACH has a small and extensible system kernel, providing essential functionalities
for an operating system.

- It includes components like scheduling, virtual memory management, and
inter-process communication.

- MACH supports distributed file access for seamless file access across multiple
systems.

- Remote execution is possible in MACH, allowing tasks to run on remote systems as
if they were local.

- MACH can emulate established operating system environments like UNIX, ensuring
compatibility for existing applications.

MACH supports operating systems, databases and other
subsystems

Main Mach abstractions
• Tasks:

 A Mach task is an execution environment. This consists primarily of a protected address space, and a

collection of kernel-managed capabilities used for accessing ports.

• Threads:

Tasks can contain multiple threads. The threads belonging to a single task can execute in parallel at different

processors in a shared-memory multiprocessor.

• Ports:

A port in Mach is a unicast, unidirectional communication channel with an associated message queue. Ports

are not accessed directly by the Mach programmer and are not part of a task. Rather, the programmer is

given handles to port rights. These are capabilities to send messages to a port or receive messages from a

port.

Main Mach abstractions(Cont..)
• Messages:

A message in Mach can contain port rights in addition to pure data. The kernel employs memory management

techniques to transfer message data efficiently between tasks.

• Devices:

Servers such as file servers running at user level must access devices. The kernel exports a low-level interface

to the underlying devices for this purpose.

Main Mach abstractions(Cont..)
• Memory object:

Each region of the virtual address space of a Mach task corresponds to a memory object. This is an

object that in general is implemented outside the kernel itself but is accessed by the kernel when it

performs virtual memory paging operations. A memory object is an instance of an abstract data type that

includes operations to fetch and store data that are accessed when threads give rise to page-faults in

attempting to reference addresses in the corresponding region.

 MACH task, threads and communication

Features of the MACH Kernel
Multiple tasks with large, paged virtual memory spaces

Multiple threads of execution within each task

Flexible scheduling facility

Flexible sharing of memory between tasks

Port based inter-process communication

Transparent network extensibility

Process
Management

MACH employs a scheduler to determine process
execution order based on predefined algorithms.

MACH provides mechanisms for processes to
exchange data and synchronize activities, including
messaging through ports.

MACH offers synchronization primitives like locks and
semaphores to coordinate processes accessing shared
resources.

MACH handles process termination by releasing
resources, updating accounting information, and
notifying parent processes or the system.

MACH maintains states such as running, ready,
blocked, or terminated to represent process progress
and status.

Inter-Process Communication
In MACH, a conventional process is represented by a task with a single thread of control.

Inter-process communication in MACH is based on ports and messages.

Ports are protected kernel objects used for message sending and receiving.

Port sets are groups of ports combined into a single queue for message reception.

Messages consist of a header and a body, containing typed data, memory copies, and port capabilities.

Tasks communicate by sending messages through ports they have send rights to.

Message receiving is an asynchronous operation, with messages logically copied into the receiving
task.Only one task can hold the receive right for a port, allowing it to read messages from the queue.

Multiple tasks can hold rights to send messages into the queue.

Memory Management
MACH utilizes memory objects. This caching mechanism improves access speed and efficiency.

Memory objects in MACH can be represented by files or any object capable of handling read and write
requests. This flexibility allows for diverse types of memory objects to be utilized.

Memory objects are mapped into a task's virtual memory in MACH. This mapping enables tasks to
access and manipulate the contents of memory objects as if they were part of their own address space.

The memory manager plays a vital role in MACH's memory management system. It provides memory
object ports, which serve as interfaces through which tasks can access and manage memory objects.

The memory manager also oversees the allocation and deallocation of memory object ports, ensuring
efficient utilization of memory resources and facilitating controlled access to memory objects.

Other
Versions of
MACH

MACH-US

MACH 4

xMACH
Real Time MACH
(MACH-RT)
GNUMACH

Importance of the MACH Kernel in Supporting
Distributed and Parallel Computation:

The MACH kernel
enables efficient

communication and
resource sharing,

essential for distributed
and parallel computation.

It allows for concurrent
execution and

collaboration among
tasks, maximizing system

performance.

Potential Applications and Benefits of the
MACH Kernel:

MACH is well-suited for building distributed applications that
leverage shared memory multiprocessors and networked
uniprocessors.

It facilitates the development of scalable and high-performance
computing systems.

The capability-based security approach of MACH ensures controlled
access and protects sensitive resources.

Conclusions

The MACH kernel is a communication-oriented operating system kernel
designed to support distributed and parallel computation.

It incorporates features such as inter-process communication, flexible
memory management, and transparent network extensibility.

MACH provides capabilities like multiple tasks, threads, and
message-based communication.

Recap of Key Points Discussed:

Thank You!

