
CHAPTER 2

FILE SERVICE ARCHITECTURE

FILE SERVICE ARCHITECTURE

File Service Architecture is an architecture that provides the facility of file
accessing by designing the file service as the following three components:

A client module

A flat file service

A directory service

1. Client Module:

The client module executes on each computer and delivers an integrated
service (flat file and directory services) to application programs with the
help of a single API.

It stores information about the network locations of flat files and directory
server processes.

2. Flat file service:

● A flat file service is used to perform operations on the contents of a file.
● The Unique File Identifiers (UFIDs) are associated with each file in this

service.
● For that long sequence of bits is used to uniquely identify each file among all

of the available files in the distributed system.
● When a request is received by the Flat file service for the creation of a new

file then it generates a new UFID and returns it to the requester.

Flat File Service Model Operations:

Read(FileId, i, n) -> Data: Reads up to n items from a file starting at item ‘i’ and returns it in
Data.

Write(FileId, i, Data): Write a sequence of Data to a file, starting at item I and extending the file
if necessary.

Create() -> FileId: Creates a new file with length 0 and assigns it a UFID.

Delete(FileId): The file is removed from the file store.

GetAttributes(FileId) -> Attr: Returns the attribute of file.

SetAttributes(FileId, Attr): Sets the attributes of the file.

Advantage of File System Architecture

Data Management and Organization:

● Hierarchical structure of directories and subdirectories.
● Naming conventions for unique file identification.

Data Access and Retrieval:

● Indexing methods for quick file location.
● Caching strategies to speed up data access.

Data Integrity and Reliability:

● Journaling for tracking uncommitted changes.
● Error detection and correction mechanisms.

Security and Access Control:

● Permissions for controlling read, write, and execute access.
● Support for encryption to protect data.

Space Management:

● Efficient allocation and deallocation of storage space.
● Enforcement of quotas to limit space usage by users/groups.

