

Submitted By:

Ankit B.K. (THA076BCT006)

Ayush Batala (THA076BCT011)

Mishan Thapa Kshetri (THA076BCT019)

Nishant Uprety (THA076BCT023)

Solution of 2076 Chaitra

Q1. Define Distributed System (DS). Explain the requirements to

successfully implement DS to suit to modern computing.
Ans: A distributed system is the system which consist of collection of autonomous

computers, connected through a network and distributed operating system

software which enables computers to co-ordinate their activities and to share the

resource of the system so that users perceive the system as single, integrated

computing facility. In other word, A distributed system is a collection of

independent computers at networked locations such that they communicate and

interact only through message passing that is viewed as a single system by its users.

Requirements for successfully implementing a Distributed System in the context of

modern computing include:

a. Scalability: The system should be able to handle an increasing number of

nodes, users, or tasks without a significant decrease in performance.

Horizontal scalability, where new nodes can be added easily, is particularly

important.

b. Reliability and Fault Tolerance: Distributed systems should be designed to

continue functioning even in the presence of hardware or software failures.

This involves redundancy, replication, and error recovery mechanisms.

c. Availability: The system should be available and responsive to users' requests

even when some components are unavailable due to failures or

maintenance.

d. Consistency and Data Integrity: Ensuring that data remains consistent and

accurate across all nodes in the system is crucial. This involves maintaining

data integrity during concurrent access and updates.

e. Concurrency and Synchronization: Distributed systems often involve multiple

processes or threads accessing shared resources concurrently. Implementing

mechanisms for proper synchronization and managing concurrent access is

essential.

f. Load Balancing: Distributing the workload evenly across nodes helps prevent

resource bottlenecks and ensures optimal utilization of resources.

g. Security: Distributed systems should implement strong security measures to

protect data and prevent unauthorized access. This includes authentication,

encryption, and access control mechanisms.

h. Transparency: Users and applications interacting with the distributed system

should perceive it as a single, coherent entity rather than a collection of

individual components.

i. Interoperability: Modern distributed systems often involve components built

on different platforms, programming languages, or technologies. Ensuring

these components can work seamlessly together is important.

j. Heterogeneity: Distributed systems can consist of diverse hardware and

software components. The system should be designed to accommodate this

heterogeneity and facilitate interoperability.

k. Resource Sharing: Efficiently sharing computational resources, such as CPU,

memory, and storage, among different nodes is a key requirement.

l. Global State Management: In cases where the system spans across

geographical regions, maintaining a consistent global state and handling

potential latency challenges become crucial.

Q2. Discuss the functionalities provided by RMI Software. How is

event and notification system implemented in distributed object-

based communication.
Ans: RMI is the means by which objects in different processes can communicate

with one another. It allows object in one process to invoke or call the methods of

an object in another process. RMI uses stub and skeleton object for communication

with the remote object. Functionalities provided by RMI Software are:

a. Remote Object Invocation: RMI enables a client to invoke methods on a

remote object as if it were a local object. The client-side stub handles the

communication details, such as marshaling parameters and sending requests

over the network, while the server-side skeleton handles receiving the

request, invoking the method on the actual object, and returning the result.

b. Security: RMI provides security mechanisms to control access to remote

objects and prevent unauthorized access. This includes authentication and

authorization features.

c. Registry Service: RMI uses a registry service to bind remote objects to names

so that clients can look up and locate these objects. The registry acts as a

central repository for object references.

d. Asynchronous Communication: While RMI primarily supports synchronous

remote method invocation, developers can implement asynchronous

communication patterns by using techniques such as callbacks.

An event and notification system is a crucial for allowing components in a

distributed system to communicate and react to changes or events. It can be

implemented in the following ways:

a. Event Producer Registration: Components that generate events (event

producers) register themselves with a central event management system. In

the context of RMI, these event producers could be remote objects that

provide event-related methods.

b. Event Consumer Subscription: Components interested in receiving

notifications about specific events (event consumers) subscribe to the event

management system. Again, in an RMI context, these consumers could be

remote objects that provide callback methods.

c. Event Notification: When an event occurs, the event producer invokes a

method on the event management system. The event management system

maintains a list of subscribed consumers for each event type.

d. Callback Invocation: The event management system looks up the subscribed

consumers and invokes callback methods on these remote objects using RMI.

These callback methods notify the consumers about the event.

e. Data Passing: If the event includes data, it can be passed as parameters to

the callback methods. RMI's serialization mechanisms handle the data

transfer seamlessly.

f. Error Handling and Retry: Robust event systems should handle network

failures, retries, and potential errors in delivering notifications to remote

consumers.

g. Unsubscription: Consumers can unsubscribe from events when they are no

longer interested, and event producers can deregister from the event system

if they are no longer active.

h. Security: Ensure proper security measures are in place to prevent

unauthorized access to events and to protect the integrity of the event

system.

Q.3 Explain the distributed file system? Explain the principle

operation of any one modern distributed file system?
Ans: A distributed file system (DFS) is a file system that spans across multiple file

servers or multiple locations, that are situated in different physical places. In DFS,

files are accessible just as if they were stored locally, from any device and from

anywhere on the network.

Fig: Distributed File System (DFS)

The Sun Network File System (NFS) is one of the earliest and most successful

network file systems. It was developed by Sun Microsystems and designed to

provide transparent access to remote files and directories across a network,

particularly for diskless workstations. NFS allows users and applications to access

and manipulate files on remote servers as if they were local files. The focus of NFS

is on transparency, robustness, and performance.

Fig: Sun NFS Architecture

The principle operations of Sun NFS are described below:

a. Search for File within Directory:

 Clients initiate a request to search for a specific file within a directory

on the NFS server.

 The server processes the request and searches the specified directory

for the requested file.

 The result is sent back to the client, indicating whether the file was

found and its location if found.

b. Read a Set of Directory Entries:

 Clients request a list of directory entries (filenames and metadata)

from a specific directory on the NFS server.

 The server retrieves the requested directory entries and sends the list

back to the client.

 This operation allows clients to browse the contents of a remote

directory.

c. Manipulate Links and Directories:

 Clients can create, delete, or manipulate symbolic links, hard links, and

directories on the NFS server.

 These operations enable clients to manage the organization of files

and directories on the remote server.

d. Read File Attribute:

 Clients request the attributes (metadata) of a specific file on the NFS

server, such as permissions, owner, size, and timestamps.

 The server retrieves the requested attributes and sends them back to

the client.

e. Write File Attribute:

 Clients can modify the attributes of a specific file on the NFS server,

such as changing permissions or timestamps.

 The server updates the attributes based on the client's request.

f. Read File Data:

 Clients initiate a request to read the contents of a specific file on the

NFS server.

 The server retrieves the requested data and sends it back to the client.

 This operation allows clients to access the content of remote files.

g. Write File Data:

 Clients can write data to a specific file on the NFS server.

 The server stores the incoming data in the specified file.

 This operation allows clients to modify the content of remote files.

Q.4 What is the issue in Lamport’s timestamp? How do you avoid

the issue? Explain with your alternate algorithm.
Ans: Lamport’s timestamp is the procedure to determine the order of event

occurring. The issues in Lamport’s timestamp algorithm are:

 Distinct event of different processor can have same timestamp (partial

ordering of events)

 Doesn’t determine if the events are casually related or not.

These issues can be solved with the use of Vector clock.

Vector clock are the clock that provide the ability to determine if the two selected

events are casually related or not. In vector clocks, each process maintains a vector

of logical clock values, one for each process in the system. Vector clocks capture the

"causal relationship" between events among different processes, providing a more

accurate and consistent ordering of events. So, for N given processes, there will be

vector/ array of size N.

Implementation:

 Each process P maintains a vector clock VC[P], where the i-th element VC[P][i]

represents the logical clock value of process i at process P.

 When a process P initiates an event, it increments its own logical clock value:

VC[P][P] += 1.

 When process P sends a message to another process Q, P includes its current

vector clock VC[P] with the message.

 Upon receiving a message with vector clock VC', process Q updates its own

vector clock element-wise:

 For each i, VC[Q][i] = max(VC[Q][i], VC'[P][i]).

 Process Q then increments its own logical clock: VC[Q][Q] += 1.

Fig: Example of Vector Clock Implementation

This approach ensures that the ordering of events respects the causal relationships

between processes, regardless of the speed of their clocks. Vector clocks provide a

more accurate and reliable way to track and compare the progress of events in a

distributed system, making them suitable for various synchronization and

consistency protocols.

Q.5 How does a new coordinator elect in executing central

coordinator algorithm? How to come to consensus in DS? Explain.
Ans: Electing a New Coordinator in Central Coordinator Algorithm:

In distributed systems, the concept of a coordinator often arises in scenarios where

multiple nodes need to coordinate their actions or make decisions collectively. The

central coordinator algorithm is a common approach where one node is designated

as the coordinator, and it manages the coordination process.

When it comes to electing a new coordinator in the central coordinator algorithm,

the process typically involves the following steps:

1. Coordinator Failure Detection: The nodes in the distributed system

continuously monitor the status of the current coordinator. If the coordinator

fails or becomes unresponsive, the other nodes detect this failure through

various mechanisms such as heartbeat signals, timeouts, or communication

failures.

2. Initiating Election: Once a node detects the coordinator's failure, it may

initiate an election process to select a new coordinator. This node becomes a

candidate for the coordinator role.

3. Sending Election Messages: The candidate node sends election messages to

other nodes in the system, notifying them of its intention to become the new

coordinator.

4. Priority Comparison: Upon receiving an election message, each node

compares the priority of the candidate with its own priority or with the

priorities of other candidate nodes. The priority can be based on factors like

node ID, availability, load, or any other relevant criteria.

5. Choosing the New Coordinator: The node with the highest priority among all

participating nodes becomes the new coordinator.

6. Announcing the New Coordinator: The elected node broadcasts an

announcement to all nodes, indicating that it is the new coordinator. This

ensures that all nodes are aware of the new coordinator's identity.

Coming to Consensus in Distributed Systems:

Consensus is the process of achieving agreement among multiple nodes in a

distributed system on a specific value or decision. It is a fundamental challenge in

distributed computing, especially when nodes may have different inputs or

experiences. Achieving consensus is critical for ensuring the correctness and

consistency of distributed applications. The process of coming to consensus

typically involves the following steps:

1. Proposal Phase: Nodes propose a value or decision to be agreed upon. Each

proposal is assigned a unique identifier.

2. Acceptance Phase: Nodes send their proposals to other nodes for

acceptance. Nodes can accept multiple proposals but choose to accept the

one with the highest identifier (highest priority).

3. Learning Phase: Once a proposal has been accepted by a majority of nodes,

it is considered chosen. Nodes inform others about the chosen value.

4. Termination: The consensus process terminates when a value has been

chosen by a majority of nodes and is agreed upon by all.

Q.6 What is fault? How to implement primary-backup replica

system? How is it different from active replication?
Ans: A fault refers to an abnormal condition or behavior that disrupts the normal

operation of a system, component, or process. Faults can manifest as errors,

failures, or malfunctions and can occur due to various reasons, such as hardware or

software issues, human errors, environmental factors, or external events.

The primary-backup replication model is a technique for achieving fault tolerance

in distributed systems. It involves having a primary replica manager that handles

client requests and one or more secondary replica managers (backups) that

replicate the primary's state. If the primary replica manager fails, one of the

backups is promoted to become the new primary. Steps to implement primary

backup replica systems:

a. Designating Primary and Backups:

 Choose one node to be the primary replica manager and one or more

nodes to be secondary replica managers (backups).

 The primary handles client requests and performs operations on the data.

b. Client Communication:

 Clients send their requests to the primary replica manager.

 Front-end communication is simplified as clients interact only with the

primary.

c. Primary's Operation:

 The primary executes received requests in the order they are received,

maintaining a consistent view of the system's state.

 It generates and assigns unique identifiers to each request to prevent re-

execution of duplicates.

d. Updating Backups:

 For update requests, the primary updates its own state and sends the

updated data along with the response and unique identifier to all backup

replica managers.

e. Backup Handling:

 Backup replica managers receive and store the updated state, response,

and unique identifier.

 Backups remain passive and do not directly interact with clients.

f. Promotion on Primary Failure:

 In the event of the primary's failure, a backup is promoted to become the

new primary.

 The promoted backup takes over client communication and data

processing.

g. Client Response:

 The primary replica manager responds to clients with the outcome of

their requested operations.

It differs from active replication in following ways:

 Communication: In primary-backup replication, clients communicate only

with the primary replica manager. In active replication, clients

communicate with all replicas.

 Processing: In primary-backup, only the primary processes requests. In

active replication, all replicas process requests independently.

 Complexity: Primary-backup is simpler to implement and manage since

only one replica processes requests. Active replication involves more

complexity due to the need to compare and reconcile responses.

Q.7 What do you mean by forward and backward recovery? How

to implement coordinated check pointing for recovery in DS?
Ans:

Backward Recovery:

Backward recovery involves restoring a system from an incorrect or faulty state back

to a previously accurate condition. The key challenge in backward recovery lies in

effectively reversing the system's state to rectify errors. This is achieved through

periodic recording of the system's state, creating checkpoints that mark accurate

system states. In case of errors or failures, the system can be rolled back to a

checkpoint, effectively undoing the effects of erroneous operations. Backward

recovery is particularly useful when the system encounters unexpected issues, and

it aims to bring the system back to a known and reliable state.

Forward Recovery:

Forward recovery aims to transition a system from its current state to a correct and

operable new state. Unlike backward recovery, where errors are rectified by

reversing to a known state, forward recovery focuses on predicting potential errors

in advance. The main challenge here is identifying possible errors before they occur

and taking proactive measures to prevent or mitigate their impact. Forward

recovery techniques involve making changes to the system's operation to avoid

known pitfalls or errors, ensuring the system can transition to a new, functional

state while avoiding future errors.

Coordinated Check Pointing

Coordinated checkpointing is a technique used in distributed systems to achieve

fault tolerance and recovery. It involves periodically saving the state of the entire

distributed system so that, in the event of a failure, the system can be restored to a

consistent state and continue its operation.

Coordinated checkpointing for recovery in a distributed system can be

implemented through following steps:

1. Define Checkpoint Intervals: Determine how often you want to take

checkpoints. This interval should strike a balance between minimizing the

amount of lost work in case of failure and not introducing too much overhead

due to frequent checkpointing.

2. Global Checkpoint Algorithm: Choose a coordinated checkpointing

algorithm. One commonly used algorithm is the Chandy-Lamport Algorithm,

which ensures that checkpoints are taken consistently across all processes in

the system.

3. Process Coordination:

 When a process decides to initiate a global checkpoint, it sends a marker

message to all other processes to indicate that they should record their

state.

 Upon receiving a marker message, a process records its local state

(including data, variables, and any necessary information for recovery)

and sends an acknowledgment back to the initiator.

 Once the process has received acknowledgments from all other

processes, it records its own state and sends a message indicating that its

state has been saved. This ensures that processes are aware of each

other's checkpoint status.

4. Log-based Recovery:

 In addition to checkpointing, maintain a log of all important events and

actions taken by each process. This log can help replay events in case of

failure to bring the system back to a consistent state.

 Log-based recovery involves starting from the most recent consistent

checkpoint and replaying events from the log to bring the system back to

the correct state.

5. Failure Handling:

 When a process detects a failure (e.g., a crashed process), it uses the

recorded checkpoints and logs to determine the state at the time of

failure.

 The process then uses the recovery protocol to restore the system to a

consistent state, potentially rolling back to a previous checkpoint and

replaying events from the log.

6. Synchronization and Timing:

 Ensure that the coordinated checkpointing algorithm takes into account

network delays and message processing times to ensure that checkpoints

are initiated and completed in the correct order.

7. Testing and Tuning:

 Implement and test the coordinated checkpointing mechanism

thoroughly to ensure correctness and effectiveness in various failure

scenarios.

 Tune parameters such as checkpoint intervals and log retention policies

based on the characteristics of your distributed system.

8. Documentation and Monitoring:

 Clearly document the coordinated checkpointing mechanism and the

recovery process.

 Implement monitoring and alerting to detect and respond to issues

related to checkpointing and recovery.

Q.8 What are the alternative approaches to avoid the possibility

of deadlock in distributed system? Explain.
Ans: Deadlocks in distributed systems can lead to resource contention and system

inefficiencies. To avoid the possibility of deadlock, several alternative approaches

and techniques can be employed. Here are some of them:

1. Resource Allocation Graphs:

 Distributed systems can use resource allocation graphs to detect and

prevent deadlocks. Nodes represent processes, and edges represent

resource requests and allocations.

 Techniques like Banker's algorithm can be extended to distributed

systems, where the central authority monitors resource allocation to

avoid unsafe states.

2. Timeouts and Rollbacks:

 Introducing timeouts can help prevent deadlocks by allowing a process to

release resources after a certain period of inactivity.

 In distributed systems, if a process does not complete its operation within

a specified time, the system can forcibly release its held resources, rolling

back the operation.

3. Distributed Lock Management:

 Implement distributed lock management algorithms that ensure proper

acquisition and release of locks to avoid deadlocks.

 Techniques like distributed lock managers (DLMs) can provide a

centralized or distributed mechanism for coordinating locks among

processes.

4. Priority-based Approaches:

 Assigning priorities to processes can help prevent deadlocks by allowing

higher-priority processes to preempt lower-priority processes.

 In distributed systems, processes can communicate their priorities to a

central authority that manages resource allocation.

5. Global States and Checkpointing:

 Distributed systems can periodically capture global system states through

checkpointing. In case of deadlock detection, the system can revert to a

previous checkpoint state to avoid the deadlock.

6. Avoiding Circular Waits:

 Ensure that processes request resources in a predefined order to avoid

circular wait conditions.

Q.9 Write short notes on:
Physical Clock Synchronization: Cristain’ Algorithm:

Cristian's Algorithm is a clock synchronization technique used to synchronize the

time of client processes with a time server. It is particularly effective in low-latency

networks where the Round-Trip Time (RTT) is short compared to the desired

accuracy of time synchronization. Round Trip Time refers to the time duration

between the start of a Request and the end of the corresponding Response. The

steps involved in algorithm are:

I. The process on the client machine sends the request for fetching clock

time(time at the server) to the Clock Server at time.

II. The Clock Server listens to the request made by the client process and returns

the response in form of clock server time.

III. The client process fetches the response from the Clock Server at time and

calculates the synchronized client clock time using the formula given below.

Tclient = Tserver + (T1 - To)/2

where,

Tclient = refers to the synchronized clock time,

Tserver = refers to the clock time returned by the server,

To = to the time at which request was sent by the client process,

T1 = refers to the time at which response was received by the client

process

MACH

Mach, introduced in 1986, is a pioneering microkernel-based operating system. It

offers the foundational services essential for an operating system to function,

emphasizing modularity and extensibility. Originally developed for the VAX 11/784

multiprocessor, Mach quickly expanded its reach, becoming operational on a

variety of systems including the IBM PC/RT and Sun B. Initially, Mach contained

portions of Berkeley's code, leading to a relatively large and monolithic kernel.

Subsequent efforts by CMU (Carnegie Mellon University) focused on purging

Berkeley code from the kernel and relocating it to user space, aligning with the

system's goals of supporting diverse architectures, functioning across varying inter-

computer network speeds, simplifying the kernel's structure, and enabling

distributed operations.

The goals of MACH are:

 Support diverse architectures

 Function with varying inter computer networks speeds

 Simplified kernel’s structure

 Distributed operation

 Integrated memory management and IPC

 Heterogeneous system support

 Protected message passing

 Extensible microkernel

CORBA components for RMI

Common Object Request Broker Architecture (CORBA) is the standard developed

by object management group to provide interoperability among the distributed

objects. It describes the message mechanism by which object distributed over the

network can communicate with each other irrespective of platform and language

used to develop those objects. The components in CORBA are:

1. ORB core

 It carries out the request-reply protocol between client and server.

 It Provide operations that enable process to be started and stopped.

 It Provide operations to convert between remote object references and

strings.

2. Object Adapter (server)

 - Bridges the gap between CORBA objects and the programming language

interfaces of the slave classes. Creates remoter object references for the

CORBA objects

 Dispatches each RMI to the appropriate servant class via a skeleton, and

activates objects.

 Assigns a unique name to itself and each object

3. Skeletons (server)

 An IDL compiler generates skeleton classes in the server's language.

 Dispatch RMI's to the appropriate servant class.

4. Client Proxies / Stubs

 Generated by an IDL compiler in the client language.

 A proxy class is created for object-oriented languages

 Stub procedures are created for procedural languages.

5. Implementation Repository

 Activates registered servers on demand and locates servers that are

currently running.

6. Interface Repository

 Provides information about registered IDL interfaces to the clients and

servers that require it. Optional for static invocation; required for dynamic

invocation.

