
CHAPTER 2

CHAPTER 2-Distributed Objects and File System

BY ANKU JAISWAL
ASST.PROF. IOE,PULCHOWK CAMPUS

DISTRIBUTED OBJECT

Distributed objects are reusable software components that can be distributed
and accessed by the user across the network.

–These objects can be assembled into distributed applications.

Example of Distributed Object

● Let's consider a distributed file system, like the Google File System (GFS). In this
system, a file can be represented as an object.

● Each file object contains metadata such as its name, size, location, and permissions,
along with the actual data stored in the file.

● The file object exposes methods for operations such as reading from the file, writing
to the file, appending data, deleting the file, etc.

● These methods can be invoked by clients distributed across the network.

In a distributed system, objects like files might be distributed across multiple nodes
in the network for fault tolerance, scalability, and performance reasons.

Other example of distributed object

Content Delivery Networks (CDNs): CDNs distribute objects such as web
pages, images, and videos across multiple edge servers to reduce latency and
improve content delivery speed.

Blockchain Networks: Blockchain platforms distribute objects (blocks) across a
network of nodes for decentralized and immutable ledger maintenance. Each
block contains transactions and references to previous blocks.

Uses of Distributed Objects

Distributed objects might be used :

1. to share information across applications or users.

2. to synchronize activity across several machines.

3. to increase performance associated with a particular task.

 Location of objects and processes for a normal system

https://www.druby.org/sidruby/2-1-understanding-distributed-object-systems.html#d2inprc

 Location of objects and processes within a distributed object systems

https://www.druby.org/sidruby/2-1-understanding-distributed-object-systems.html#d2inprc2

DISTRIBUTED OBJECT COMMUNICATION

The main method of distributed object communication is with remote method
invocation, generally by message-passing:

–one object sends a message to another object in a remote machine or process to
perform some task.

–-The results are sent back to the calling object.

https://en.wikipedia.org/wiki/Distributed_object_communication
https://en.wikipedia.org/wiki/Remote_method_invocation
https://en.wikipedia.org/wiki/Remote_method_invocation

RMI(REMOTE METHOD INVOCATION)

● Distributed objects generally communicate with Remote Method
Invocation (RMI).

● RMI has message passing mechanism in which :

– one object sends message to another object in a remote machine or
process

–to carry out some task and the results are sent back to the calling
object.

RMI uses stub and skeleton object for communication with the remote object.

EXAMPLE

Distributed objects are used in Java RMI.

CORBA lets one build distributed mixed object systems.

DCOM(Distributed Component Object Model) is a framework for distributed
objects on the Microsoft platform.

Pyro is a framework for distributed objects using the Python programming
language.

https://en.wikipedia.org/wiki/Java_RMI
https://en.wikipedia.org/wiki/CORBA
https://en.wikipedia.org/wiki/Distributed_Component_Object_Model
https://en.wikipedia.org/w/index.php?title=PYthon_Remote_Objects&action=edit&redlink=1
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)

Stub − A stub is a object at client. It resides in the client system; it
acts as a gateway for the client program.

Skeleton − This is the object which resides on the server side. stub
communicates with this skeleton to pass request to the remote
object.

STUB

The stub is an object, acts as a gateway for the client side.

All the outgoing requests are routed through it.

It resides at the client side and represents the remote object. When the caller invokes
method on the stub object, it does the following tasks:

1. It initiates a connection with remote Virtual Machine ,
2. It writes and transmits (marshals-pack) the parameters to the remote Virtual Machine
3. It waits for the result
4. It reads (unmarshals) the return value or exception, and
5. It finally, returns the value to the caller.

SKELETON

The skeleton is an object, acts as a gateway for the server side object.

All the incoming requests are routed through it.

When the skeleton receives the incoming request, it does the following tasks:

1. It reads the parameter for the remote method

2. It unmarshall the parameters

3. It invokes the method on the actual remote object, and

4. It writes and transmits the result to the caller.

DESIGN ISSUES FOR RMI

Retry Request Message: whether to retransmit the request message until
either a reply is received or the server is assumed to have a fail.

Duplicate Filtering: when retransmissions are used, server has to identify
duplicate requests.

Retransmission of results: whether to keep a history of result messages to
enable lost results to be retransmitted without re-executing the operations at
the server.

RPC (Remote Procedure Call)
Remote Procedure Call (RPC) protocol is generally used to communicate between
processes on different workstations.

RPC is a remote communication medium in which a client program calls a procedure in

another program running in a server process.

Step 1: The client, client stub, and RPC runtime execute on the client machine.

Step 2: A client starts a client stub process by passing parameters in the usual
way. The packing of the procedure parameters is called marshalling. The client
stub stores within the client's own address space, and it also asks the local RPC
Runtime to send back to the server stub.

Step 3: RPC Runtime manages the transmission of messages between the
network across client and server, and it also performs the job of retransmission,
acknowledgment, routing, and encryption.

Step 4: After completing the server procedure, it returns to the server stub, which
packs (marshalls) the return values into a message. The server stub then sends a
message back to the transport layer.

Step 5: In this step, the transport layer sends back the result message to the client
transport layer, which returns back a message to the client stub.

Step 6: In this stage, the client stub demarshalls (unpack) the return parameters in
the resulting packet, and the execution process returns to the caller.

Advantages of RPC

○ RPC supports process and thread-oriented models.

○ RPC makes the internal message passing mechanism hidden from the user.

○ The effort needs to re-write and re-develop the code is minimum.

○ Remote procedure calls can be used for distribution and the local environment.

○ RPC provides abstraction. For example, the message-passing nature of network communication remains

hidden from the user.

○ RPC allows the usage of the applications in a distributed environment that is not only in the local

environment.

○ With RPC code, re-writing and re-developing efforts are minimized.

CASE STUDY- refer site(ezexplanation.com)

Project Code:
https://pypi.org/project/sunrpc/

DFS(DISTRIBUTED FILE SYSTEM)

A distributed file system (DFS) is a file system that spans across multiple file
servers or multiple locations, that are situated in different physical places.

Files are accessible just as if they were stored locally, from any device and from
anywhere on the network.

It allows programs to access or store isolated files as they do with the local ones,
allowing programmers to access files from any network or computer.

WORKING OF DFS

● Distribution: First, a DFS distributes datasets across multiple clusters or nodes.
Each node provides its own computing power, which enables a DFS to process the
datasets in parallel.

● Replication: A DFS will also replicate datasets onto different clusters by copying
the same pieces of information into multiple clusters.

● This helps the distributed file system to achieve fault tolerance
● —to recover the data in case of a node or cluster failure
● —as well as high concurrency, which enables the same piece of data to be

processed at the same time.

Clients access data on a DFS using namespaces.

Organizations can group shared folders into logical namespaces.

A DFS namespace is a virtual shared folder that contains shared
folders from multiple servers.

These present files to users as one shared folder with multiple
subfolders.

When a user requests a file, the DFS brings up the first available
copy of the file.

TYPES OF DFS

● Windows Distributed File System
● Network File System (NFS)
● Server Message Block (SMB)
● Google File System (GFS)
● Lustre
● Hadoop Distributed File System (HDFS)
● GlusterFS
● Ceph
● MapR File System

PROPERTIES/ADVANTAGE OF DFS

File transparency: users can access files without knowing where they are
physically stored on the network.

Load balancing: the file system can distribute file access requests across
multiple computers to improve performance and reliability.

Data replication: the file system can store copies of files on multiple computers to
ensure that the files are available even if one of the computers fails.

Security: the file system can enforce access control policies to ensure that only
authorized users can access files.

Scalability: the file system can support a large number of users and a large
number of files.

ADVANTAGES OF DFS

● Transparent local access — Data is accessed as if it’s on a user’s own device
or computer.

● Location independence — Users may have no idea where file data physically
resides.

● Massive scaling — Teams can add as many machines as they want to a DFS
to scale out.

● Fault tolerance — A DFS will continue to operate even if some of its servers or
disks fail because machines are connected and the DFS can gracefully failover.

FILE SERVICE ARCHITECTURE

File Service Architecture is an architecture that provides the facility of file
accessing by designing the file service as the following three components:

A client module

A flat file service

A directory service

1. Client Module:

The client module executes on each computer and delivers an integrated
service (flat file and directory services) to application programs with the
help of a single API.

It stores information about the network locations of flat files and directory
server processes.

2. Flat file service:

● A flat file service is used to perform operations on the contents of a file.
● The Unique File Identifiers (UFIDs) are associated with each file in this

service.
● For that long sequence of bits is used to uniquely identify each file among all

of the available files in the distributed system.
● When a request is received by the Flat file service for the creation of a new

file then it generates a new UFID and returns it to the requester.

Flat File Service Model Operations:

Read(FileId, i, n) -> Data: Reads up to n items from a file starting at item ‘i’ and returns it in
Data.

Write(FileId, i, Data): Write a sequence of Data to a file, starting at item I and extending the file
if necessary.

Create() -> FileId: Creates a new file with length 0 and assigns it a UFID.

Delete(FileId): The file is removed from the file store.

GetAttributes(FileId) -> Attr: Returns the attribute of file.

SetAttributes(FileId, Attr): Sets the attributes of the file.

3. Directory Service:

The directory service serves the purpose of relating file text names with their
UFIDs (Unique File Identifiers).

The fetching of UFID can be made by providing the text name of the file to the
directory service by the client.

The directory service provides operations for creating directories and adding new
files to existing directories.

Directory Service Model Operations:

Lookup(Dir, Name) -> FileId : Returns the relevant UFID after finding the text name
in the directory. Throws an exception if Name is not found in the directory.

AddName(Dir, Name, File): Adds(Name, File) to the directory and modifies the
file’s attribute record if Name is not in the directory. If a name already exists in the
directory, an exception is thrown.

UnName(Dir, Name): If Name is in the directory, the directory entry containing
Name is removed. An exception is thrown if the Name is not found in the directory.

GetNames(Dir, Pattern) -> NameSeq: Returns all the text names that match the
regular expression Pattern in the directory.

SUN NETWORK FILE SYSTEM

CASE STUDY: refer site (ezexplanation.com)

NAME SERVICES

In a Distributed System, a Naming Service is a specific service whose aim is to:

provide a consistent and uniform naming of resources(Computers, services,
remote objects, and files, as well as users) ,

thus allowing other programs or services to localize them and obtain the required
metadata for interacting with them.

WHICH ONE IS EASIER TO REMEMBER ?????

74.125.237.83 or google.com

BENEFITS

Resource localization

Uniform naming

Device independent address (e.g., you can move domain name/web site from one

server to another server seamlessly).

DNS

The domain name system (DNS) is a naming database in which internet domain
names are located and translated into Internet Protocol (IP) addresses.

The domain name system maps the name people use to locate a website to the IP
address that a computer uses to locate that website.

All DNS servers fall into one of four categories:

Recursive resolvers,

root name servers,

TLD nameservers, and

authoritative nameservers.

https://www.cloudflare.com/learning/dns/glossary/dns-root-server/

DNS RESOLVER

A recursive resolver (also known as a DNS recursor) is the first stop in a DNS query.

After receiving a DNS query from a web client, a recursive resolver will either respond with

cached data, or send a request to a root nameserver, followed by another request to a TLD

nameserver, and then one last request to an authoritative nameserver.

After receiving a response from the authoritative nameserver containing the requested IP

address, the recursive resolver then sends a response to the client.

During this process, the recursive resolver will cache information received from authoritative

nameservers.

DNS ROOT SERVER

A root server accepts a recursive resolver’s query which includes a domain name, and the root

nameserver responds by directing the recursive resolver to a TLD nameserver, based on the

extension of that domain (.com, .net, .org, etc.).

TLD NAMESERVER

A TLD nameserver maintains information for all the domain names that share a common domain extension,

such as .com, .net, or whatever comes after the last dot in a URL.

For example, a .com TLD nameserver contains information for every website that ends in ‘.com’.

If a user was searching for google.com, after receiving a response from a root nameserver, the recursive resolver

would then send a query to a .com TLD nameserver, which would respond by pointing to the authoritative

nameserver for that domain.

Management of TLD nameservers is handled by the Internet Assigned Numbers Authority (IANA). The IANA
breaks up the TLD servers into two main groups:

 Generic top-level domains: These are domains that are not country specific, some of the best-known

generic TLDs include .com, .org, .net, .edu, and .gov.

 Country code top-level domains: These include any domains that are specific to a country or state.

Examples include .uk, .us, .ru, and .jp.

AUTHORITATIVE NAME SERVER

When a recursive resolver receives a response from a TLD nameserver, that response
will direct the resolver to an authoritative nameserver.

The authoritative nameserver is usually the resolver’s last step in the journey for an IP
address.

The authoritative nameserver contains information specific to the domain name it
serves (e.g. google.com) and it can provide a recursive resolver with the IP address of
that server

DNS records

DNS record types are records that provide important information about a hostname or

domain. These records include the current IP address for a domain.

Also, DNS records are stored in text files (zone files) on the authoritative DNS server. The

content of a DNS record file is a string with special commands that the DNS server

understands.

The following are the five major DNS record types:

 A record
 AAAA record
 CNAME record
 Nameserver (NS) record
 Mail exchange (MX) record

1. A record

The A record is the most important DNS record type. The "A" in A record stands for

"address."

An A record shows the IP address for a specific hostname or domain. For example, a DNS

record lookup for the domain example.com returns the following result:

2. AAAA record

AAAA record, just like A record, point to the IP address for a domain.

However, this DNS record type is different in the sense that it points to IPV6 addresses.

IPV6 is an upgrade over IPV4 as it offers more IP addresses.

 As a result, IPV6 solves the issue of running out of unique IP addresses.

3. CNAME record

CNAME—or, in full, "canonical name"—is a DNS record that points a domain name (an

alias) to another domain.

For example, the subdomain ng.example.com can point to example.com using CNAME.

4. NS record

NS(Nameserver) record helps point to where internet applications like a web browser can

find the IP address for a domain name.

5. MX record

A mail exchange (MX) record, is a DNS record type that shows where emails for a

domain should be routed to. In other words, an MX record makes it possible to direct

emails to a mail server.

Directory and Discovery Services

Directory:

A directory, in computing, is a specialized database optimized for reading, searching, and
often updating.

It organizes and provides access to information in a hierarchical or logical structure.

Directories can contain various types of data, including user profiles, system
configurations, network resources, and more.

Directories are commonly used for authentication, authorization, and information lookup.

Directory Services:

Directory services refer to the software systems or protocols that
manage access to directories.

They provide a centralized and standardized way for applications
and users to access directory information.

Directory services typically offer features such as authentication,
authorization, and access control.

One of the most well-known directory services is the Lightweight
Directory Access Protocol (LDAP), which is widely used for
accessing and managing directory information.

Other examples include Active Directory (used in Windows
environments) and OpenLDAP (an open-source implementation of
LDAP).

