Introduction

There are two primary transport layer protocols for host-to-host communication:
TCP and UDP. Unlike TCP, where the client establishes a connection with the
server, UDP operates without forming a connection. Instead, the client sends a
datagram directly. The server, in turn, does not need to accept a connection but
simply waits to receive datagrams. Each incoming datagram includes the sender's
address, which the server uses to send data back to the appropriate client.

Socket

A socket is a combination of IP address and port on one system. On each system a
socket exists for a process interacting with the socket on other system over the
network.

Function Descriptions

socket()

Creates an UN-named socket inside the kernel and returns an integer known as
socket descriptor.

bind()

Assigns the details specified in the structure ‘serv_addr’ to the socket created in
the step above.

listen()

With second argument as *10’ specifies maximum number of client connections
that server will queue for this listening socket.

accept()

The server is put to sleep and when for an incoming client request, the three-
way TCP handshake is complete, the function accept () wakes up and returns
the socket descriptor representing the client socket.

Algorithm :

server()

create UDP socket

Bind socket to address

wait for datagram from client
process and reply to client request
repeat while server is active

client()

create UDP socket

send request to server

wait for datagram from server
process and reply from server
close socket and exit

Server Client

bind()

recvirom()

Waits for datagram arrival mqugst‘ sendto()

(blocked)

process request

|
close()

