
A CASE STUDY 
ON 

JAVA RMI
By:

Ankit B.K (THA076BCT006)
Ayush Batala (THA076BCT010)

Mishan Thapa Kshetri (THA076BCT019)
Nishant Uprety (THA076BCT023)



Introduction

■ Distributed systems require communication between entities across 
different machines. 

■ Remote Procedure Call (RPC) simplifies remote communication, but lacks 
seamless support for distributed object systems. 

■ Distributed object systems demand Remote Method Invocation for 
object-oriented communication. RMI matches object invocation semantics, 
allowing programmers to work with distant objects as if they were local.

■ Java RMI leverages the Java Virtual Machine (JVM) environment, embracing 
the Java object model. It facilitates seamless remote method invocation, 
providing an effective solution for distributed systems



Java Object Model

■ Java's platform-independent nature ensures consistent program behavior 
across diverse hardware and operating system platforms. 

■ Java distinguishes between interfaces (method definitions without 
implementation) and classes (method implementations along with data 
fields). 

■ Interface-Driven Access: Access to object data is limited to invoking public 
methods of interfaces. This enforces a clean separation between client and 
server, making it essential in distributed systems.

■ Significance in Distribution: Interfaces can reside on the client side, while the 
actual object implementation is located on the server side. This decoupling 
enables efficient and secure remote communication.



Java RMI Architecture



Layers of Java RMI System

■ Stub/Skeleton Layer:
– Stub: Client-side proxy object representing a remote object. It facilitates method 

invocation for clients.
– Skeleton: Server-side component receiving method calls from client stubs and 

forwarding them to the remote object.

■ Remote Reference Layer:
– Manages references to remote objects.
– References act as handles enabling client interaction with remote objects.

■ Transport Layer:
– Handles network communication between client and server.
– Encompasses protocols and mechanisms for data transmission.



Benefits of Layered Architecture

■ Clear separation of concerns and responsibilities.
■ Facilitates code organization and maintenance.
■ Promotes modularity and scalability.
■ Allows for easier troubleshooting and optimization.



Distributed Application using RMI

■ Define Remote Interface:
– Create a Java interface with methods to be invoked remotely on the server-side.

■ Implement Remote Object:
– Implement the remote interface in a server-side class.
– This class represents the actual object with remotely accessible methods.

■ Start RMI Registry:
– Launch the RMI registry on the server machine.
– The registry maintains a list of available remote objects and references.

■ Register Remote Object:
– Instantiate the server-side remote object class.
– Use the RMI registry's bind method to register the remote object with a specific 

name.



Distributed Application using 
RMI(Cont.…)
■ Server Code:

– The server-side application, hosting the remote object, must be running to 
handle client requests.

■ Client Code:
– In the client application, use the RMI registry's lookup method to find the 

remote object's stub.
– Utilize the stub reference to invoke remote methods on the server-side object 

as if it were local.
■ Compile and Run:

– Compile both client and server code.
– Run the server application on the server machine.
– Run the client application on the client machine to interact with the remote 

object.



Benefits of RMI for Distributed 
Apps:
■ Simplified remote method invocation.
■ Encapsulation of network communication complexities.
■ Enables object-oriented communication in distributed systems.



Real-World Applications of RMI

■ Online Games:
– RMI enables real-time interactions between game clients and a central server, 

facilitating multiplayer gaming experiences.
■ File Sharing Applications:

– RMI can be employed to create efficient and secure file sharing systems where 
clients access files hosted on remote servers.

■ Scientific Computing Applications:
– RMI aids in distributing complex scientific computations across multiple nodes, 

enhancing processing power and speed.
■ Business Applications:

– RMI supports business software that demands seamless communication between 
various components, such as inventory management and order processing.



Real World Example: JavaSpaces in 
Jini
■ Jini Technology:

– Jini, a Java-based technology, facilitates dynamic and distributed system 
creation.

– JavaSpaces, a core component of Jini, offers a distributed shared 
memory service.

■ JavaSpaces and RMI:
– JavaSpaces: Utilizes Java RMI to enable object sharing among 

networked clients and servers.
– Provides a distributed and persistent shared memory service.



Real World Example: JavaSpaces in 
Jini
■ Features of JavaSpaces:

– Asynchronous Object Sharing: Enables sharing and exchange of objects 
among networked clients and services asynchronously.

– Location Transparency: Clients and services can interact without prior 
knowledge of each other's locations.

– Collaboration: Supports seamless communication and collaboration 
between distributed components.

■ JavaSpaces demonstrates how Java RMI is effectively integrated into Jini to 
enable efficient communication and collaboration between distributed 
components.



Distributed Job Processing with 
JavaSpaces
■ Job Submission:

– Clients submit data-intensive tasks (jobs) to JavaSpaces as encapsulated Java 
objects.

– Java RMI is used for client-JavaSpace communication to submit job objects.

■ Task Processing:
– Multiple servers act as workers within the network.
– Workers continuously monitor JavaSpaces for available jobs.
– Java RMI is utilized to invoke methods on the job object, executing the required 

processing.

■ Result Aggregation:
– After processing, workers generate result objects.
– Result objects are written back to JavaSpaces.
– Clients interested in results can query JavaSpaces for completed results.



Conclusion

■ Simplified Distributed Communication: Java RMI exemplifies the 
power of remote method invocation for distributed applications.

■ Abstraction of Network Complexity: RMI abstracts the intricacies of 
network communication, simplifying the creation of distributed 
systems.

■ Streamlined Interaction: RMI offers a straightforward approach to 
interact with remote objects, regardless of their physical locations.


