

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

 THAPATHALI CAMPUS

A Lab Report

 Of

 Lamport Clock Synchronization

Using Java

Submitted By:

Anuj Rayamajhi (THA076BCT007)

Submitted To:

Department of Electronics and Computer Engineering

Thapathali Campus

Kathmandu, Nepal

July, 2023

1. Introduction

The lab work "Lamport Clock Synchronization using Java" explores the concept of

Lamport's logical clocks, which are a distributed algorithm for ordering events in a

distributed system. In this lab, we aim to implement Lamport's Clock Synchronization

algorithm in Java to simulate how multiple processes in a distributed system can coordinate

their clocks to maintain a consistent view of time. The lab will demonstrate how processes

exchange events and update their local clocks based on the exchanged timestamps.

2. Theory

Lamport's Logical Clock is a distributed algorithm developed by Leslie Lamport to order

events in a distributed system. In a distributed system, where multiple processes are

running independently on different nodes, it is challenging to establish a global notion of

time. Lamport's Clock provides a way to assign logical timestamps to events across

processes, allowing for a partial ordering of events in the distributed system.

The algorithm uses logical clocks represented by integers. Each process maintains its own

logical clock. The logical clock value increases monotonically with time, and any two

events on the same process have different logical timestamps. When an event occurs, the

process increments its logical clock before processing the event.

When a process sends a message to another process, it includes its current logical clock

value in the message. The receiving process updates its own logical clock to be the

maximum of its current value and the received logical clock value + 1. This ensures that

the receiving process's clock is always ahead of the sender's clock, and the events are

correctly ordered based on the Lamport timestamps.

Example:

Consider a simple scenario with two processes, P1 and P2, in a distributed system. Let's

assume that the processes are independent and do not share a global clock. The events in

each process are represented as E1, E2, E3, etc.

1. Process P1:

• E1 occurs with a logical timestamp of 1. (P1's clock = 1)

• E2 occurs with a logical timestamp of 3. (P1's clock = 3)

• E3 occurs with a logical timestamp of 4. (P1's clock = 4)

2. Process P2:

• E4 occurs with a logical timestamp of 2. (P2's clock = 2)

• E5 occurs with a logical timestamp of 5. (P2's clock = 5)

Now, let's assume that P1 sends a message to P2 after event E3 with its current logical

clock value of 4.

Message: "Hi P2, this is P1. My current clock value is 4."

P2 receives the message and updates its logical clock based on the received timestamp. The

new logical clock value for P2 will be max (5, 4+1) = 5.

Now, event E6 occurs on P2 with a logical timestamp of 6. (P2's clock = 6)

Based on the logical timestamps, we can see that E4 (on P2) comes before E1, E2, and E3

(on P1), and E5 (on P2) comes before E6 (on P2). However, we cannot determine the

relationship between E1, E2, E3 (on P1) and E4, E5, E6 (on P2) since they are not related

by direct message exchange. The Lamport Logical Clock algorithm provides a partial

ordering of events that can be used to reason about causality in a distributed system without

requiring a global clock.

3. Code

The Java implementation of Lamport's Clock Synchronization consists of several classes.

The “LamportClock” class represents the logical clock and provides methods to

increment the clock value, get the current clock value, and update the clock based on

received timestamps. The Event class is a simple data structure to hold information about

events exchanged between processes, including the sender, receiver, and the corresponding

Lamport timestamp.

The “LamportProcess” class simulates a process in the distributed system. Each process

runs in a separate thread and executes a loop where it sends events to other processes and

receives events from them. Upon sending an event, it updates its own logical clock and

sends the current timestamp along with the event. Upon receiving an event, it updates its

logical clock based on the received timestamp. The main class

“LamportClockSyncDemo” initializes the processes, starts their threads, and waits for all

threads to finish. It then prints the results in tabular form, showing the sent and received

events along with their respective Lamport timestamps.

Code Below:

import java.util.concurrent.atomic.AtomicInteger;

import java.util.ArrayList;

import java.util.Collections;

import java.util.Comparator;

import java.util.List;

class LamportClock {

 private AtomicInteger clock = new AtomicInteger(0);

 public void sendEvent() {

 // Increment the clock value before sending an event

 clock.incrementAndGet();

 }

 public int getClockValue() {

 return clock.get();

 }

 public void updateClock(int receivedClockValue) {

 // Update the clock value by taking the maximum of received value

and current value + 1

 clock.set(Math.max(receivedClockValue, clock.get()) + 1);

 }

}

class Event {

 private int from;

 private int to;

 private int lamportTime;

 public Event(int from, int to, int lamportTime) {

 this.from = from;

 this.to = to;

 this.lamportTime = lamportTime;

 }

 public int getFrom() {

 return from;

 }

 public int getTo() {

 return to;

 }

 public int getLamportTime() {

 return lamportTime;

 }

}

class LamportProcess implements Runnable {

 private int processId;

 private LamportClock clock;

 private LamportProcess[] processes;

 private List<Event> sentEvents = new ArrayList<>();

 private List<Event> receivedEvents = new ArrayList<>();

 public LamportProcess(int processId, LamportClock clock,

LamportProcess[] processes) {

 this.processId = processId;

 this.clock = clock;

 this.processes = processes;

 }

 @Override

 public void run() {

 for (int i = 0; i < 5; i++) { // Assuming 5 events for

demonstration purposes

 // Simulate some local computation before sending an event

 try {

 Thread.sleep((int) (Math.random() * 1000));

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 // Send event

 clock.sendEvent();

 int receiverId = (processId + 1) % processes.length;

 processes[receiverId].receiveEvent(clock.getClockValue());

 sentEvents.add(new Event(processId, receiverId,

clock.getClockValue()));

 // Simulate some local computation before receiving an event

 try {

 Thread.sleep((int) (Math.random() * 1000));

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 // Receive event

 int receivedClockValue = clock.getClockValue(); // Simulate

receiving the timestamp from another process

 clock.updateClock(receivedClockValue);

 receivedEvents.add(new Event(processId,receiverId,

receivedClockValue));

 }

 }

 public void receiveEvent(int receivedClockValue) {

 clock.updateClock(receivedClockValue);

 }

 public List<Event> getSentEvents() {

 return sentEvents;

 }

 public List<Event> getReceivedEvents() {

 return receivedEvents;

 }

}

public class LamportClockSyncDemo {

 public static void main(String[] args) {

 LamportClock clock = new LamportClock();

 int numProcesses = 3; // You can adjust the number of processes

for your demo

 LamportProcess[] processes = new LamportProcess[numProcesses];

 Thread[] processThreads = new Thread[numProcesses];

 System.out.println("Lamport Clock Synchronization Demo");

 // Initialize and start the processes

 for (int i = 0; i < numProcesses; i++) {

 processes[i] = new LamportProcess(i, clock, processes);

 processThreads[i] = new Thread(processes[i]);

 processThreads[i].start();

 }

 // Wait for all processes to finish

 for (int i = 0; i < numProcesses; i++) {

 try {

 processThreads[i].join();

 } catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 System.out.println("Sent Events Table:");

 System.out.println("From To Lamport

Time Status");

 List<Event> allSentEvents = new ArrayList<>();

 for (LamportProcess process : processes) {

 allSentEvents.addAll(process.getSentEvents());

 }

 Collections.sort(allSentEvents,

Comparator.comparingInt(Event::getLamportTime));

 for (Event event : allSentEvents) {

 System.out.printf("Process %d Process

%d %d Sent%n", event.getFrom(), event.getTo(),

event.getLamportTime());

 }

 System.out.println("\nReceived Events Table:");

 System.out.println("Sent by Received by Lamport

Time Status");

 List<Event> allReceivedEvents = new ArrayList<>();

 for (LamportProcess process : processes) {

 allReceivedEvents.addAll(process.getReceivedEvents());

 }

 Collections.sort(allReceivedEvents,

Comparator.comparingInt(Event::getLamportTime));

 for (Event event : allReceivedEvents) {

 System.out.printf("Process %d Process

%d %d Received%n", event.getFrom(), event.getTo(),

event.getLamportTime());

 }

 }

}

4. Output

5. Conclusion

Lamport's Clock Synchronization algorithm is a fundamental concept in distributed

systems to achieve logical ordering of events across multiple processes. In this lab, we

successfully implemented Lamport's Clock Synchronization in Java, demonstrating how

processes interact and coordinate their logical clocks to ensure event ordering consistency.

By exchanging timestamps and updating their clocks accordingly, processes achieve

synchronization, despite the lack of a global clock. Understanding and implementing such

clock synchronization algorithms are crucial for building robust and coordinated

distributed systems.

