

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING

THAPATHALI CAMPUS

A Lab Report

On

Implementation of RMI in Java

(Distributed System Lab:2)

Submitted By:

Sajjan Acharya

(THA076BCT038)

Submitted To:

Department of Electronics and Computer Engineering

Thapathali Campus

Kathmandu, Nepal

June, 2023

Theory

Remote Method Invocation (RMI) is a Java-based technology that enables

communication between distributed objects in a networked environment. RMI allows a

Java object running on one machine to invoke methods on a remote Java object residing

on a different machine, as if it were a local method call.

The fundamental concept behind RMI is the idea of object serialization, which is the

process of converting an object into a byte stream that can be transmitted over the

network. RMI uses Java's built-in object serialization mechanism to achieve this. When

a remote method is invoked, the parameters and the return value (if any) are

automatically serialized and transmitted to the remote object.

To establish a connection between the client and the server, RMI relies on the Java

Remote Object Activation Service (Java RMI Registry). The registry acts as a lookup

service, allowing clients to locate remote objects by their registered names.

Background

The importance of RMI lies in its ability to simplify the development of distributed

systems. By providing a seamless way to interact with remote objects, RMI enables

developers to build distributed applications in Java with ease. RMI abstracts the

complexities of network communication, allowing developers to focus on the logic of

their applications rather than low-level networking details. It promotes code reusability

and modularity by enabling objects to be distributed across multiple machines while

maintaining a consistent programming model.

Moreover, RMI fosters the concept of distributed computing, allowing for the creation

of scalable and flexible systems. It supports the development of client-server

architectures, where clients can remotely invoke methods on server-side objects,

enabling distributed processing and resource sharing. RMI plays a vital role in

distributed systems such as enterprise applications, where components may be

distributed across multiple servers, providing seamless communication and

collaboration between these components.

Remote Interface: The remote interface defines the methods that can be invoked

remotely. It acts as a contract between the client and server, specifying the methods that

the client can call on the remote object. Both the client and server must have access to

the remote interface. It serves as a contract defining the methods that can be invoked

remotely, ensuring that both the client and server agree on the available methods and

their signatures.

Remote object: The remote object is the implementation of the remote interface. It

resides on the server and provides the actual implementation of the remote methods.

The remote object must extend the ‘java.rmi.server.UnicastRemoteObject’ class to

enable remote method invocation. It is the actual implementation of the remote interface

residing on the server, responsible for executing the logic behind the remote method

calls and providing the desired functionality to the clients.

RMI Registry: The RMI Registry is a lookup service that allows clients to locate remote

objects by their registered names. It acts as a centralized registry where the server binds

its remote objects, making them available for clients to find and invoke. It acts as a

centralized directory where the server binds its remote objects, allowing clients to locate

and access the remote objects by their registered names, simplifying the process of

object discovery and invocation.

Stub and Skeleton: The stub and skeleton are automatically generated by the RMI

compiler (RMIC) based on the remote interface and the remote object. The stub acts as

a client-side proxy, intercepting the method calls and forwarding them to the server.

The skeleton resides on the server and receives the method calls from the stub, invoking

the corresponding methods on the remote object.

Object Serialization: Object serialization is the process of converting an object into a

byte stream that can be transmitted over the network. RMI uses Java's built-in object

serialization mechanism to serialize method parameters and return values when

invoking remote methods. It is a fundamental aspect of RMI, allowing Java objects to

be converted into byte streams for transmission over the network. By leveraging Java's

object serialization, RMI enables the transparent transmission of method parameters

and return values, ensuring the integrity and consistency of data across distributed

objects.

Algorithm

1. Define a remote interface.

2. Implement the remote interface.

3. Compile the interface and implementation.

4. Start the RMI Registry.

5. Instantiate the remote object on the server.

6. Bind the remote object to a name in the RMI Registry.

7. Obtain a reference to the remote object from the RMI Registry on the client.

8. Cast the remote object reference to the remote interface type.

9. Invoke remote methods on the client-side interface.

10. Handle remote invocation exceptions as needed.

Code/Implementation

In this lab, a simple function of multiplication of two numbers was invoked from

another object to demonstrate the flexibility and functionality of RMI that is considered

a useful boon in the concept of distributed systems. Multiplication of ‘12’ and ‘3’ were

carried out and it was displayed to another object when it was called.

Code for remoteinterface.java:

Code for remoteimplement.java:

Code for RMIServer.java:

Code for RMIClient.java:

Results

Client Side:

In the server:

Discussion

Concept of RMI was demonstrated in the lab session in the Java programming

language. During the implementation, it was noticed that RMI is tightly coupled with

the Java language which can limit the interoperability of it with other systems that may

be in other languages. Also, further dependency on the serialization of Java might

induce further issues with compatibility during the use of serialized objects of different

versions. Despite them, the implementation provided an effective means of distributed

object communication. The methods were invoked from another objects remotely

which was the major objective of the experiment.

