
2070 Chaitra

Q1. a)What do you mean by software and explain about the
generation of programming languages?

Ans: Computer software is a computer program which is a sequence of
instructions designed to direct a computer to perform certain task. A software is
an interface between user and computer. It is responsible for controlling,
integrating and managing the hardware components of a computer system and for
accomplishing specific task.

The language used to give instructions to a computer is known as programming
language. There are five generations of programming languages .They are as
follows:

1stgeneration of programming languages(Machine language):

Machine language is made up of entirely 0s and 1s and is the only programming
language that the computer can understand directly without translation. There is
not one universal machine language because the language must be written in
accordance with the special characteristics of a given processor. Each type or
family of processor requires its own machine language. For this reason, machine
language is said to be machine-dependent (also called hardware-dependent).
Machine language programs have the advantage of very fast execution speeds and
efficient use of primary memory. Use of machine language is very tedious,
difficult and time consuming method of programming. Machine language is
low-level language. Since the programmer must specify every detail of an
operation, a low level language requires that the programmer have detailed
knowledge of how the computer works. Programmers had to know a great deal
about the computer’s design and how it functioned. As a result, programmers were
few in numbers and lacked complexity.

2ndgeneration of programming languages(Assembly Language):

They are also classified as low-level languages because detailed knowledge of
hardware is still required. They were developed in 1950s. They are also machine
dependent. Assembly languages use mnemonic operation codes and symbolic
addresses in place of 1s and 0s to represent the operation codes. A mnemonic is
an alphabetical abbreviation used as memory aid. This means a programmer can
use abbreviation instead of having to remember lengthy binary instruction codes.
Before they can be used by the computer, assembly languages must be translated
into machine language. A language translator program called an assembler does



this conversion. The advantages of programming with assembly languages are
that they produce programs that are efficient, use less storage, and execute much
faster than programs designed using high-level languages.

3rdgeneration of programming languages(Procedure Oriented Language):

Third generation languages, also known as high-level languages, are very much
like everyday text and mathematical formulas in appearance. They are designed to
run on a number of different computers with few or no changes. Most high level
languages are considered to be procedure-oriented, or Procedural languages,
because the program instructions comprise lists of steps, procedures, that tell the
computer not only what to do but how to do it. The programmer spends less time
developing software with a high level language than with assembly or machine
language because fewer instructions have to be created. A language translator is
required to convert a high-level language program into machine
language. Two types of language translators are used with high level
languages: compilers and interpreters.

4thgeneration of programming languages (Problem Oriented Language):

Fourth generation languages are also known as very high level languages. They
are nonprocedural languages, so named because they allow programmers and
users to specify what the computer is supposed to do without having to specify
how the computer is supposed to do it. Consequently, fourth generation languages
need approximately one tenth the number of statements that a high level
languages needs to achieve the same results. Because they are so much easier to
use than third generation languages, fourth generation languages allow users, or
non-computer professionals, to develop software. Depending on the language, the
sophistication of fourth generation languages varies widely. These languages are
usually used in conjunction with a database and its data dictionary. Five basic
types of language tools fall into the fourth generation language category.

1. Query languages

2. Report generators.

3. Applications generators.

4. Decision support systems and financial planning languages.

5. Some microcomputer application software.

5th Generation of programming languages (Natural Language):

Natural Languages represent the next step in the development of programming



languages, i-e fifth generation languages. The text of a natural language statement
very closely resembles human speech. In fact, one could word a statement in
several ways perhaps even misspelling some words or changing the order of the
words and get the same result. These languages are also designed to make the
computer “smarter”. Natural languages already available for microcomputers
include Clout, ,Q&A, and Savvy Retriever (for use with databases) and HAL
(Human Access Language. The use of natural language touches on expert systems,
computerized collection of the knowledge of many human experts in a given field,
and artificial intelligence, independently smart computer systems.

1.b) Define the term flowchart. Discuss about different symbols used in
flowchart.

Ans: A flowchart is a pictorial representation of an algorithm that uses boxes of
different shapes to denote different types of instructions. The actual instructions
are written within these boxes using clear and concise statements. These boxes are
connected by solid lines having arrow marks to indicate the flow of operation, that
is, the exact sequence in which the instructions are to be executed.

The symbols used in a flowchart are as follows:t



2.a) Find out the value of a ,b, and c where following

expressions are executed. int a = 2, b =3, c;

a =(b++) + (++b) + a;

c = a>b? a:b;

b=(a++)+(b—)+a;

c = c++ *b--;

Ans: a= 11, b = 25, c= 260.

a b c

2 3 0

10 26 10

11 25 260

2.b) What are the difference between formatted and unformatted I/O
statements? Describe with proper examples..



Ans:

Formatted Input/Output Statements Unformatted Input/Output Statements

1. The user can decide the
format of the output.

1. The computer decides the
format of output. The user
can not chage it.

2. It is more complex to write. 2. It is less complex to write.

3. Commonly used formatted I/O
statements are: scanf(), printf().

3. Commonly used unformatted
I/O
statements are: gets(),putch(),etc.

4. They contain format
specifier in the syntax.

4. They do not contain format
specifier in the syntax.

3.a)

Explain importance of break and default statements in switch statement.

Ans: The syntax of switch statement is as follows:

{

case constant1:

block of case constant1;

break;
case constant2:

block of case constant2;

break;

case constant3:

block of case constant3;

break;

default:

default block;

}

The break statement at the end of each block indicates the end of a particular



case and causes as exit from the switch statement, transferring the control to
statement following the switch. If the break statement is omitted, execution
continues on into the next case statement until either a break or the end of the
switch break or the end of the switch is reached. It is important because it
prevents unnecessary execution of subsequent case statements.

The default is an optional case. When present, it will be executed if the value of
expression does not match with any of the case constants. If not present, no
action takes place if all the matches fails and control goes to the next statement.
Thus the break statement and default statement are important in switch
statement in order to avaoid unexpexted flow of the program.

3. b) Write a C program to display following patter using unformatted output
statements.

P
Pu
PuL
PULCH
PULCHO
puLcHoW
PULCHOWK
#include <stdio.h>

int main() {
char text[] = "PULCHOWK";

for (int i = 1; i <= 8; i++) {
for (int j = 0; j < i; j++) {

if (j % 2 == 0) {
printf("%c", text[j]);

} else {
printf("%c", text[j] + (32));

}
}
printf("\n");

}



return 0;
}

4. a) Define “function definition” and write the program to find sum of
two numbers using user defined functions.

Ans:

Function definition is a block of code that specifies the behavior or operation of
a function. Function definition in C consists of:

a. function declaration
return_type function_name(type1,, type2,,……type n);

b. function call
function_name(arg1, arg2, …argn)

c. function definition
return_type function_name(type1 arg1 type 2 arg2,,……..type n,argn)
{
Function body;
}

#include<stdio.h>
int sum(int a, int b)
{
return a+b;

}
int main()
{

int n1, n2, s;
printf("Enter two numbers");
scanf("%d%d",&n1,&n2);
s = sum(n1,n2);
printf("\nThe sum is:%d", s);
return 0;

}
4.b) What do you mean by “call by value and call by reference” along with
suitable example? Ans: Call by reference and call by value are the two methods of
passing argument to the function. In call by value, the value of the actual



parameter is passed. The original value of passed variable is not modified. The
value of argument in the calling function is not changed even if they are changed in
called function.
For example:
#include<stdio.h>

void swap(int, int);
int main()
{
int x, y;
printf("Enter 2 numbers");
scanf("%d%d",&x,&y);
printf("Before swapping:x=%d and y=%d",x,y);
swap(x,y);
printf("\nAfter swapping:x=%d and y=%d",x,y);
return 0;

}
void swap(int a, int b)
{
int temp;
temp = b;
b=a;
a=temp;

}

Output:

Enter 2 numbers

1

2

Before swapping:x=1 and y=2

After swapping:x=1 and y=2

Here, the values of a and b are swapped in the function. However, in the main
function, the value of x and y are not swapped. Thus, in call by value method,
any change in a or b is not reflected in x and y.
In call by reference, rather than the actual value, the address of variable is passed as



argument. Pointers are used to point to the memory location of the variables. Any
change in the variable in called function is reflected in the calling function.

For example:

#include<stdio.h>
void swap(int *,int *);
int main()
{
int x, y;
printf("Enter 2 numbers\n");
scanf("%d%d",&x,&y);
printf("Before swapping:x=%d and y=%d",x,y);
swap(&x,&y);
printf("\nAfter swapping:x=%d and y=%d",x,y);
return 0;

}
void swap(int*a, int*b)
{
int temp;
temp = *b;
*b=*a;
*a=temp;

}

OUTPUT

Enter 2 numbers

1

2

Before swapping:x=1 and y=2

After swapping:x=2 and y=1

Here, address of the variable is passed to the called function. Here addresses of x
and y are passed to the function swap. These addresses are copied to a and b
respectively. Any operation done inside the swap is actually done on the memory
location pointed by the address. Thus, swapping done on *p and *q is reflected



on x and y.
Q.5)Can we pass whole array element to function? Wrire a program to
display only those students information which are passed. Use separate
function to check the result of student. The information of students like
Name, Roll No, Address and Marks are passed from main function and pass
to functions using array type arguments.

Ans: To pass an array to a function as an argument, we need to pass the name of
the array. It means starting address of the memory where members of the array are
stored. If we know the starting address of contagious memory inside function and
number of members of the array, we can easily access each member by using loop.
Passing arrays to function is passing by reference.

#include <stdio.h>
#include <stdlib.h>
#include <stdbool.h>

struct Student {
int rollNo;
char name[50];
char address[100];
float marks;

};

bool isPassed(float marks) {
return marks >= 40.0;

}

void displayPassedStudents(struct Student students[], int numStudents) {
printf("Passed Students:\n");

for (int i = 0; i < numStudents; i++) {
if (isPassed(students[i].marks)) {

printf("roll No: %d\n", students[i].rollNo);
printf("name: %s\n", students[i].name);

printf("address: %s\n", students[i].address);
printf("marks: %f\n", students[i].marks);

}



}
}

int main() {
int numStudents;
printf("Enter the number of students: ");
scanf("%d", &numStudents);
struct Student students[numStudents];

for (int i = 0; i < numStudents; i++) {
printf("\nEnter details for student %d:\n", i + 1);
printf("Roll No: ");
scanf("%d", &students[i].rollNo);
printf("Name: ");
scanf(" %[^\n]", students[i].name);
printf("Address: ");
scanf(" %[^\n]", students[i].address);
printf("Marks: ");
scanf("%f", &students[i].marks);

}

displayPassedStudents(students, numStudents);

return 0;
}

Q.6.a)Explain the use of typedef of keyboard in structures.

Ans: Typedef is a keyword in C whose main purpose is to form complex data types
from more basic data types. A typedef can be used to simplify the declaration for
structure.

For example:

typedef struct
{



type
member1;
type
member2;
type
member3;
} type_name;
Here type_name represents the stucture definition associated with it. Now this
type_name can be used to declare a variable of this stucture type.

Q.6.b)Explain the need of nested structure. Write a C program to convert
data in BS to data in AD using structure. Use the difference of current
data.

Ans: A structure within another student is known as nested structure. It is
needed for organizing and handling complex hierarchy between data elements.
For example: a structure could have elements: name, date of birth and address.
The date of birth could further be a structure with elements year, month and
day.

#include<stdio.h>

void main()
{

struct date{

int day;
int month;
int year;

}d;
int y=56;
int m=8;
int dae=16;

printf("enter year\n");
scanf("%d",&d.year);



printf("enter month\n");
mon:
scanf("%d",&d.month);

if(d.month>12){printf("invalid month enter again \n") ; goto mon;}

printf("enter day\n");
da:
scanf("%d",&d.day);

if(d.day>32){printf("invalid day enter again \n") ; goto da;}

if(d.day<dae)
{

d.month --;
d.day= d.day+30;
d.day=d.day-dae;

}
else {

d.day= d.day-dae;
}
if(d.month<m)
{

d.year--;
d.month=d.month+12;
d.month=d.month-m;

}
else{

d.month=d.month-m;
}
d.year=d.year-y;

printf("%d-%d-%d",d.year,d.month, d.day);

}

Q7.a) A pointer variable is used to store address of some other variables,



however, we need to specify datatype while declaring pointer variable. Why?

Ans:

A pointer is used to store address of some other variable. However, We need to
specify the datatype while declaring pointer because that datatype is referring to
the data type of the variable to which the pointer is pointing. For example:

int *p;

Here the pointer variable points to a variable of int type.

Different data types have different sizes in memory, and pointer arithmetic also
relies on data type. While dereferencing a pointer, the compiler needs to know
the data type in order to perform operations. Due to the ability of a pointer to
directly refer to the value that it points to, it becomes necessary to specify
which data type is pointing to, in the declaration.
Q.7.b) Briefly explain array of pointers. How are array and pointer

related? Give example. Ans:

An array of pointers is an arrangement where each element of the array is a pointer
to some other data, rather than being a direct value. This concept combines the
features of arrays and pointers in C, allowing the user to store and manipulate
multiple pointers in a sequential manner.

When an array is declared, compiler allocates sufficient amount of memory to
contain all the elements of the array. Base address i.e address of the first element
of the array is also allocated by the compiler. we can use a pointer to point to first
element of array, and then we can use that pointer to access the array elements.

For example:

#include <stdio.h>
int main()
{
int i;
int a[5] = {1, 2, 3, 4, 5};
int *p = a; // same as int*p = &a[0]
for (i = 0; i < 5; i++)
{
printf("%d",*p); p++;
}
return 0;



}
In the above program, the pointer *p will print all the values stored in the array one
by one. We can also use the Base address (a in above case) to act as a pointer and
print all the values. The generalized form for using pointer with an array, *(a+i) is
same as: a[i]

Q.8.a) Define opening and closing a file along with suitable examples.

Ans:

Opening a file is performed using the library function in the "stdio.h"

header file: fopen(). The syntax for opening a file in standard I/O is:

fptr = fopen("file","mode").

The file can be opened in various modes and their meanings are as follows:

1. r: It opens the file in reading mode. If the file does not exist, fopen() returns
NULL. 2. w: It opens the file for writing. If the file exists, the contents are
overwritten and if the file does not exist, it is created.
3. r+: It opens the file for both reading and writing. If the file does not exist,
fopen() returns NULL. 4. w+: It opens the file for both reading and writing. If
the file exists, the contents are overwritten and if the file does not exist, it is
created.
5. a: It opens the file in append mode i.e. data is added to the end of the file.

If the file does not exist, it is created.
6. a+: It opens the file for both reading and appending. If the file does not exist, it is
created.

fopen() finds the file from specified path and loads the file from the disk to the
buffer and sets up a file pointer that points to the first character of the pointer.

Closing a file is performed using library function fclose() in the <stdio.h>
header file. When the file is closed, the following operations are performed:

1. The characters in buffer would be written to the file on the disk.
2. A character with ASCII value 26 would get written to the end of the file.
3. The buffer associated with the file is removed from the memory.

For example:

#include <stdio.h>



#include <stdlib.h>
int main()
{
int num;
FILE
*fptr;
fptr = fopen("C:\\program.txt","w");
if(fptr == NULL)
{
printf("Error!");
exit(1);s
}
printf("Enter num: ");
scanf("%d",&num);
fprintf(fptr,"%d",num);
fclose(fptr);
return 0;
}

Here, file is opened in write mode using fptr. After the required data is written
in the file, it is closed using fclose(fptr).

Q.8.b) Write a program to display records in sorted order sorting is
performed in ascending order with respect to name using data files concept.

Ans:
#include <stdio.h>
#include <string.h>

struct Record {
char name[50];
int age;

};

void swap(struct Record *a, struct Record *b) {
struct Record temp = *a;
*a = *b;



*b = temp;
}

int main() {
FILE *file;
struct Record records[100];
int numRecords, i, j;

file = fopen("records.txt", "r");
if (file == NULL) {

printf("Error opening file");
}
fscanf(file, "%d", &numRecords);
for (i = 0; i < numRecords; i++) {

fscanf(file, "%s %d", records[i].name, &records[i].age);
}

fclose(file);

for (i = 0; i < numRecords - 1; i++) {
for (j = 0; j < numRecords - i - 1; j++) {

if (strcmp(records[j].name, records[j + 1].name) > 0) {
swap(&records[j], &records[j + 1]);

}
}

}

printf("Sorted records in ascending order by names:\n");
for (i = 0; i < numRecords; i++) {

printf("%s %d\n", records[i].name, records[i].age);
}

return 0;
}



Q.9.a) Compare arithmetic and logical if statements in FORTRAN

with suitable examples. Ans:

Arithmetic If statement Logical If statement

1. It uses any valid arithmetic
expression depending on its
value to transfer

program control.

1. It uses relational and logical
oerations to transfer program
control.

2. The expression used in
arithmetic if generates either
negative, zero or

positive value.

2. The expression used in logical if
generates either true or false.

3. Its syntax is:
if(expression)k1,k2,k3

3. Its syntax is:
If (condition) then

4. For example:
real x
read(*,*) x
if(x) 1,2,3
1. Write(*,*) ‘Negative’

goto 4
2. Write(*,*) ‘Zero’

goto 4
3. Write(*,*) ‘Positive’

goto 4
4. end

5. For example:
real x
read(*,*),x
if(n. gt. 0) then
write(*,*)’Positive’
elseif(n. lt. 0) then
write(*,*)’Negative’
else
write(*,*)’Zero’
endif
stop
end

Q.9.b) Write a FORTRAN program to read m*n matrix, transpose it and

display both the matrices. Ans:

program MatrixTranspose

integer, parameter :: max_rows = 10



integer, parameter :: max_cols = 10

integer :: m, n, i, j
real :: matrix(max_rows, max_cols), transpose(max_cols, max_rows)

write(*,*) "Enter the number of rows (m):"
read(*,*) m
write(*,*) "Enter the number of columns (n):"
read(*,*) n

write(*,*) "Enter the matrix elements:"
do i = 1, m

do j = 1, n
read(*,*) matrix(i, j)

end do
end do

do i = 1, n
do j = 1, m

transpose(i, j) = matrix(j, i)
end do

end do

write(*,*) "Original Matrix:"
do i = 1, m
do j = 1, n

write(*,*) matrix(i, j)
end do
write(*,*)

end do

write(*,*) "Transposed Matrix:"
do i = 1, n

do j = 1, m
write(*,*) transpose(i, j)

end do
write(*,*)

end do

end program MatrixTranspose



submitted by : 079bei010- AUSTINA ARYAL 079bei026- PRAZWAL
CHAPAGAIN 079bei041- SOSTIKA SHRESTHA


