

 2069 Ashad Question Paper

 Tribhuvan University

 Institute of Engineering

 Pulchowk Campus

Submitted by:

Avinav Panta Raj Sujakhu Sooraj Khanal

079BEI011 079BEI028 079BEI047

Submitted to:

Department of Computer and Electronics

2069 Ashad questions:

1. Differentiate between high level and low-level languages. Explain the steps of

solving a problem using computer.

Answer:

Low level Language High Level Language

They are generally faster than high level
languages.

They are generally slower than low level
language

Low level languages are more difficult to
learn as they are closer to machine level
languages.

High level languages are comparatively
easier to learn.

Requires additional knowledge of the
computer architecture

Does not requires additional knowledge of
the computer architecture

They are machine dependent and are not
portable

Are not machine dependent and therefore
more portable

Require any additional knowledge of the
computer architecture

Does not require any additional knowledge
of the computer architecture

More error prone Less error prone

Debugging and maintenance is difficult Debugging and maintenance is
comparatively easier

They are generally used for developing
system software and embedded
applications

They are used to develop a variety of
applications like websites and software for
mobile and computers.

Following are the ways of solving a problem using a computer:

1. Problem Analysis

This step involves analyzing the problem and brainstorming possible solution.

Different people have different preferences on how to analyze a certain problem.

2. Algorithm Development

Algorithms are very helpful to learn how a certain program works and helps in

coding. For any given problems, algorithms can be way to visualize the problem

analysis done in the previous steps. An algorithm is step by step description of

activities or methods to be processed for getting desired output from a given input

3. Flowchart Development

Flowcharts put algorithm into figures which can be especially helpful when coding.

A flowchart is a pictorial representation of an algorithm that uses boxes of different

shapes to denote different types of instructions. The actual instructions are written

within these boxes using clear and concise statements. These boxes are connected

by solid lines having arrow marks to indicate the flow of operation, that is, the exact

sequence in which the instructions are to be executed.

4. Coding

To make a program, what we have write instructions to the computer which is

known as code. The act of writing code in a computer language is known as coding.

In other words, code is a set of instruction that a computer can understand.

5. Compilation and Execution

Compilation is the process in which a program translates a code that is written into

a machine level language which a computer can understand. Compilation process

are done by programs known as compilers. Each programming language has its own

different compiler. After the compilation process if the written code is correct then

the computer moves into the next step. Execution of a code is the process in which

a computer receives instructions from the compiler and performs the required task.

6. Debugging and testing

This is the step in which the code we wrote is analyzed a program to check if there

are any errors in it that would prevent the program from running. This step is called

debugging. Another method for checking errors in a program is testing. In this

method, either a human or a program runs the code to check if any errors show up

and amend them if they do.

7. Documentation

This process refers to a brief information about the program we write. It is a usual

practice in the industry for programmers to write specific instructions or caveats

related to a section of code. This helps other more beginner programmers to

understand various sections of codes.

Question no 2.

Consider a statement

𝑠𝑐𝑎𝑛𝑓(%s, 𝑠𝑡𝑟);

Where str is a variable

In the above statement why "&" symbol us not used? Can we input string with space

in this statement? If not, why?

Answer:

The "&" symbol is not used in the statement because str denotes an array of

characters and in C when an array is passed in a function, we are passing the

address of the first character in an array.

No, we can not input string with spaces in this statement because the function scanf

is designed to read a collection of non-white space characters like a space, tab and a

new line. In order to read a string with space, the above statement can be modified

as follows:

𝑠𝑐𝑎𝑛𝑓("%[^\𝐧]", 𝐬𝐭𝐫)

The "%[^\n] " format specifier reads an input of strings until a new line character is

encountered.

Question no 3

Write a program in C to find all possible values of the root of a quadratic equation

𝑎𝑥2 + 𝑏𝑥 + 𝑐 ?

#include <stdio.h>

#include <math.h>

int main() {

 float a, b, c, d, real, imag, root1, root2;

 printf("Enter coefficients a, b, and c: ");

 scanf("%lf %lf %lf", &a, &b, &c);

 d = b * b - 4 * a * c;

 if (d > 0) {

 root1 = (-b + sqrt(d)) / (2 * a);

 root2 = (-b - sqrt(d)) / (2 * a);

 printf("Roots are real and different: \n");

 printf("Root 1 = %.2f\n", root1);

 printf("Root 2 = %.2f\n", root2);

 } else if (d == 0) {

 root1 = root2 = -b / (2 * a);

 printf("Roots are real and equal:\n");

 printf("Root 1 = Root 2 = %.2f\n", root1);

 } else {

 real = -b / (2 * a);

 imag = sqrt(-d) / (2 * a);

 printf("Roots are complex and different:\n");

 printf("Root 1 = %.2lf + %.2lfi\n", real, imag);

 printf("Root 2 = %.2lf - %.2lfi\n", real, imag);

}

 return 0;

}

Question no 4

Write down the significance of main() in C. What are the differences between pass by

value and pass by reference arguments. Describe both with meaningful examples. 2+6

In C programming, the main() function represents the entry point of a program. A

computer when given a task, starts with the instructions present in the main function.

As such, the main() function is required in every C program. The instructions in this

function makes the main logic of the programs. The main function serves as the entry

point of any program.

In C programming language, generally all arguments are passed by value unless

pointers are used. Let us consider the following example for pass by value:

#include <stdio.h>

void modify(int x) {

 x = x * 2;

}

int main() {

 int num = 5;

 modifyValue(num);

 printf("Num: %d\n", num);

 return 0;

}

The above program will give the following output:

Num : 5

This is an example of pass by value. This means that the function receives a copy of the

actual value of the argument, not a reference or the memory address to the original

variable. Any changes made to the parameter within the function do not affect the

original value outside the function. In the above example, we can see that the function

𝑥 = 𝑥 ∗ 2 ; had no effect on the output of the program. In pass by value, the function

only works with its own local copy of the value.

In C pointers can be used for pass by reference. Consider the following example:

#include <stdio.h>

void modify (int *x) {

 *x = *x * 2;

}

int main() {

 int num = 5;

 modify (&num);

 printf("Num: %d\n", num);

 return 0;

}

The output of the given program is:

𝑁𝑢𝑚 ∶ 10

When a pointer is passed in a function, the function receives the memory address of

the value and not the actual value itself like in pass by value. This allows the function to

indirectly modify the original value via pointers.

Question no 5

Explain how arrays can be passed to functions. WAP that passes an array to a function

and prints the largest and the smallest element in it 2+6

Arrays are the collection of elements of the same data type. Consider the following

example for passing arrays to functions:

#include <stdio.h>

void sum (int x[69]) {

 x[0] = 0;

}

int main() {

 int num[5]

 sum (num);

 printf("Element number zero is : %d\n", num[0]);

 return 0;

}

In this way arrays can be passed onto functions.

#include <stdio.h>

void printLargeSmall(int x[5]) {

 int temp;

 for(int i = 0; i<5;i++)

{

 for(int j=1; j<5;j++)

 {

 if(x[j] > x[i])

 { x[i] = temp;

x[i] = x[j];

x[j] = temp;}

}

}

printf("The largest element is %d and the smallest is %d" , x[0], x[5]);

}

int main() {

 int num[5]

for(int i = 0; i<5;i++)

{

 printf("Please enter a number: ");

 scanf("%d", num[i]);

}

 printLargeSmall(num);

 return 0;

}

Question no 6

How are structures different from arrays. Create a structure in C to store the name of

a batsman, runs scored and the no of times the batsman is dismissed. In the program

read the data of five players and display the batting average of the player whose name

is entered by the user. Batting average is given by total runs / total dismissals 2+6

In C, an array is a collection of elements the same data type while a structure is a

collection of elements of different data types. Consider the following example:

#include <stdio.h>

int main() {

 int num[5];

 struct num

{

 char name[6];

 float wages;

 int age;

}same;

 return 0;

}

In the above example num is an example of an array and it contains five elements of the

int data type only while same is a structure which contains three elements, each of a

different data type.

#include <stdio.h>

#include <string.h>

struct cricket

{

 char name[12];

 int run;

 int dismissals;

};

int main()

{

 struct cricket batsman[2];

 for(int i = 0; i<2;i++)

 {

 printf("Enter the name of a batsman: ");

 scanf("%s", batsman[i].name);

 printf("\nEnter the no of runs: ");

 scanf("%d", &batsman[i].run);

 printf("\nEnter the no of dismissals: ");

 scanf("%d", &batsman[i].dismissals);

 }

 char choice;

 char tempName[12];

 float avg;

 int g = 0;

 do

 {

 printf("Which batsman do you want to see: ");

 scanf("%s", tempName);

 for(int i = 0; i<2;i++)

 {

 if(strcmp(batsman[i].name, tempName) == 0)

 {

 avg = batsman[i]. run / batsman[i].dismissals;

 printf("The batting average of %s is %.2f\n", batsman[i].name, avg);

 g++;

 }

 if(g == 0)

 {

 printf("Player not found.\n");

 }

 }

 printf("Do you want to continue(Y\N): ");

 scanf("%c", &choice);

 }while(choice == 'Y' || 'y');

 return 0;

}

Question no 7

Write down the advantages of pointer. What type of arithmetic operations can be

implemented in pointers. Also describe the relationship between array and pointer

with approximate syntax and examples

Following are the advantages of pointers:

• Used in pass by reference

• More memory efficient

• Allows for dynamic memory allocation

• Helps while working with arrays

• Efficient string handling

• Helps to create dynamic data structures

The following arithmetic operations can be implemented in pointers:

• Addition or subtraction:

int arr[5] = {10, 20, 30, 40, 50};

int *ptr = arr; // Pointer to the first element

// Move the pointer to the third element

ptr = ptr + 2;

// Access the value at the third element

int value = *ptr; // value = 30

• Pointer comparison:

Pointers can be compared by using <,> and = symbols. For eg:

int arr[5] = {10, 20, 30, 40, 50};

int *ptr1 = arr; // Pointer to the first element

int *ptr2 = arr + 2; // Pointer to the third element

if (ptr1 < ptr2) {

 // This code block will execute

}

• Dereferencing

Dereferencing a pointer allows a user to access the data stored in a particular

memory address. For eg:

int value = 42;

int *ptr = &value; // Pointer to the integer variable

// Access the value using the pointer

int retrievedValue = *ptr; // retrievedValue = 42

Following is the relationship between pointers and arrays

• An array can be thought of as a constant pointer that points to its first

element of an array. That is if we use an array without giving the index, it

points to the first element. For example:

int numbers[5] = {10, 20, 30, 40, 50};

int *ptr = numbers; // Equivalent to int *ptr = &numbers[0];

int y = *ptr; // Access the first element (10)

In the above example, the array points to its first element.

Question no 8

WAP in C to read the following information for 96 students

Student Name, Student Roll number, Marks obtained in 100

Record all data in ioe.txt file and program should print roll number and real name of

student who have obtained greater than or equal to 40 marks.

#include <stdio.h>

struct Student {

 char name[50];

 int rollNumber;

 int marks;

};

int main() {

 FILE *file;

 file = fopen("ioe.txt", "w+");

 if (file == NULL) {

 printf("FILE NOT FOUND.\n");

 return 1;

 }

 struct Student students[96];

 // Read student information

 for (int i = 0; i < 96; i++) {

 printf("Enter details for Student %d:\n", i + 1);

 printf("Name: ");

 scanf("%s", students[i].name);

 printf("Roll Number: ");

 scanf("%d", &students[i].rollNumber);

 printf("Marks obtained (out of 100): ");

 scanf("%d", &students[i].marks);

 printf("\n");

 // Write the student information to the file

 fprintf(file, "%s %d %d\n", students[i].name, students[i].rollNumber, students[i].marks);

 }

 // Close the file

 fclose(file);

 // Print the roll number and name of students with 40 marks or more

 printf("Students with 40 marks or more: \n");

 for (int i = 0; i < 96; i++) {

 if (students[i].marks >= 40) {

 printf("Roll Number: %d, Name: %s\n", students[i].rollNumber, students[i].name);

 }

 }

 return 0;

}

Question no 9

Rewrite the following source code correcting any error present in it. Also present the

error corrected as a comment and then write the output of the program

Answer:

//program to convert a list of temperatures

//in centigrade to Fahrenheit

#include <stdio.h>

void convert(float x[n], float y[n], int n);

void cel2far(float f, float c);

// function should be declared before the main function

int main()

{

 int i;

 int n = 3;

 float celc[n], faren[n];

 for(i = 0; i<n; i++)

 {

 printf("Celci[%d] = ", i+1); // semi colon not included and %d should've had a int value

after the quotes

 scanf("%d", celc[i]);

 }

 convert(cecl, faren, n);

 for(i = 0; i<n;i++)

 {

 printf("%d", faren[i]\n); // printf statment should be used like this

 }

 return 0;

}

void convert

{

 for(int i = 0; i<n; i++)

 {

 cel2far(far[i], cel[i]); // for loop body parts should be inside curly brackets

 }

}

void cel2far

{

 f = 9/5 *c + 32;

}

Question no 10

In Fortan, do loops are done in the following way:

do index_variable = start_value, end_value, step_size

 ! Code to be executed inside the loop

end do

Program to store and sort integers in Fortan:

program sort_integers

 implicit none

 integer, parameter :: size = 10

 integer :: i, j, temp

 integer :: arr(size)

 ! Read ten integers from the user

 print *, "Enter ten integers:"

 do i = 1, size

 read *, arr(i)

 end do

 ! Bubble sort: arrange the integers in ascending order

 do i = 1, size - 1

 do j = 1, size - i

 if (arr(j) > arr(j + 1)) then

 ! Swap the elements

 temp = arr(j)

 arr(j) = arr(j + 1)

 arr(j + 1) = temp

 end if

 end do

 end do

 ! Display the sorted integers

 print *, "Sorted integers in ascending order:"

 do i = 1, size

 print *, arr(i)

 end do

end program sort_integers

Question no 11

Syntax of two dimensional array in Fortan:

program two_dimensional_array_syntax

 implicit none

 integer, parameter :: rows = 3

 integer, parameter :: cols = 4

 integer :: i, j

 integer :: my_array(rows, cols)

 ! Initialize the array

 do i = 1, rows

 do j = 1, cols

 my_array(i, j) = i * 10 + j

 end do

 end do

 ! Access and use elements of the array

 do i = 1, rows

 do j = 1, cols

 ! Access element at row i and column j

 print *, "my_array(", i, ",", j, ") = ", my_array(i, j)

 end do

 end do

end program two_dimensional_array_syntax

Examples of this is:

program example

 implicit none

 integer, parameter :: rows = 3

 integer, parameter :: cols = 4

 integer :: i, j

 integer :: my_array(rows, cols)

 ! Initialize the array

 do i = 1, rows

 do j = 1, cols

 my_array(i, j) = i * 10 + j

 end do

 end do

 ! Display the array

 print *, "Contents of the two-dimensional array:"

 do i = 1, rows

 do j = 1, cols

 print *, my_array(i, j)

 end do

 end do

end program example

