

Arun Pankaj Bhatta

079BEI008

Bibhav Jha

079BEI015

Roshan Sharma

079BEI030

Sujata Ghimire

079BEI045

COMPUTER PROGRAMMING
Question Paper Solution

TRIBHUVAN UNIVERSITY

INSTITUTE OF ENGINEERING PULCHOWK

CAMPUS

1

1. (a) What is a program? Explain different types of programming languages in brief.

Answer: A program is a set of instructions that a computer can follow to perform specific tasks or

achieve desired outcomes. These instructions are written in programming languages, which act as

the intermediary between human-readable code and machine-executable code.

Programming languages can be broadly categorized into following types:

(i) Machine Level Language

(ii) Assembly Level Language

(iii) High Level Language

(iv) Very High-Level Language

(v) Artificial Intelligence

(i) Machine Level Language: Machine-level language, also known as machine code, is

the lowest-level programming language directly understood by a computer's CPU. It

uses binary digits (0s and 1s) to represent instructions and data. Each instruction

corresponds to a specific CPU operation, like arithmetic calculations or memory access.

Machine code is specific to a computer's architecture and processor, making programs

non-portable across different CPU types. Writing and understanding machine code is

challenging for humans, leading to the development of higher-level languages that are

translated into machine code for execution. For example: x86 Machine Code, MIPS

Machine Code, etc.

(ii) Assembly Level Language: Assembly language is a low-level programming language

that represents instructions using mnemonic codes and symbols, making it more

human-readable than machine code. Each mnemonic corresponds to a specific

machine-level instruction. It provides a direct and more understandable representation

of the CPU's operations, closely related to the architecture of the underlying processor.

Assembly language allows programmers to write code that is specific to a particular

computer system, making it less portable but more optimized for that system's

performance. As with machine code, assembly language requires an assembler to

convert the code into machine code for execution by the computer's CPU. For example:

ARM Assembly, SPARC Assembly, etc.

(iii) High Level Language: A high-level programming language is a human-readable and

abstract form of coding that provides a natural language-like syntax. It allows

programmers to write instructions without being concerned about the computer's

underlying hardware. High-level languages come with built-in functions, libraries, and

advanced features that simplify complex tasks and enhance code organization. Before

execution, high-level code is translated or compiled into machine code or intermediate

code to run on the computer. For example: C, C++, etc.

(iv) Very High-Level Language: A very high-level programming language is an even more

abstract and user-friendly form of coding, providing a simpler and more intuitive

syntax. It offers a high level of abstraction, enabling programmers to focus on the

problem-solving aspect rather than low-level details. Very high-level languages often

2

come with extensive libraries and frameworks, making it easier to implement complex

functionalities with minimal effort. Due to their user-centric design, very high-level

languages sacrifice some performance and control in favor of ease of use and rapid

development. For example: Python, JavaScript, etc.

(v) Artificial Intelligence: Natural language programming allows programmers to write

code using human language, making it accessible to non-technical individuals and

reducing the learning curve for software development. Instead of traditional

programming syntax, natural language programming relies on everyday words and

phrases for expressing instructions and logic. This approach enables people without

coding experience to communicate with computers and automate tasks using simple,

understandable language constructs. Natural language programming aims to bridge the

gap between human communication and computer programming, making it more

inclusive and empowering users from diverse backgrounds. For example: ChatGPT,

etc.

(b) What is an algorithm? How does algorithm and flowchart help in computer

programming?

Answer: An algorithm is a step-by-step set of instructions or a precise method for solving a

problem or accomplishing a task in computation or other fields.

Algorithms and flowcharts play crucial roles in computer programming, and here's an elaboration

of their significance in points:

Algorithms:

1. Logic and Step-by-step Approach: Algorithms provide a clear and systematic logic for

solving a problem or performing a task, breaking it down into individual steps.

2. Efficiency: Well-designed algorithms optimize resource usage, reducing time and memory

requirements for program execution.

3. Portability: Algorithms are independent of programming languages, making them

transferable across different platforms and environments.

4. Reusability: Algorithms can be applied to similar problems, promoting code reuse and

modularity.

5. Abstraction: Algorithms abstract the solution from implementation details, allowing

programmers to focus on the problem-solving aspect rather than specific language syntax.

Flowcharts:

1. Visualization: Flowcharts visually represent the algorithm's logical steps using shapes and

symbols, making it easier for programmers to understand, plan, and communicate the

solution.

2. Clarity: Flowcharts enhance the clarity of complex algorithms, helping to identify

potential flaws or improvements in the logic.

3

3. Debugging: When errors occur, flowcharts help in pinpointing the specific step or decision

that caused the problem, simplifying the debugging process.

4. Collaboration: Flowcharts serve as a common language for developers, designers, and

stakeholders to discuss and agree upon the program's structure and logic.

5. Documentation: Flowcharts act as documentation of the program's design, making it

easier for future developers to maintain and modify the code.

2. (a) Explain Ternary operator in C with an example. Define following terms.

(i) Preprocessor Devices

(ii) Keywords

Answer: Ternary operator in C is a compact way to express simple conditionals. Its syntax is

condition? expression1: expression2. If the condition is true, it returns expression1, otherwise

expression2. For example;

Here, the ‘result’ holds the value ‘even’ as the specified condition results true which the ternary

operator operates by assigning the first string to the “result”

(i) Preprocessor directives: Preprocessor directives in C are special instructions that

begin with a '#' symbol and are processed before the actual compilation of the code,

controlling conditional compilation, including header files, and performing text

substitution. For example; #include <stdio.h>, #include<string.h>, etc.

(ii) Keywords: Keywords in programming are reserved words with predefined meanings

that form the foundation of a language's syntax and structure. For Example; int, printf,

etc.

(b) Write the output of the following C program?

#include<stdio.h>

void main()

{

 int a, b;

 double c = 123.55667788;

 char str[]= "I enjoy programming";

 scanf("%3d%2d",&a, &b);

 printf("a=%5d\n b=%-7d", a, b);

 printf("\n%10.7s", str);

 printf("\n%8.3f",c);

 printf("\n%-10.6f",c);

}

Input: 123456 789

Output:

123456 789

a= 123

b= 45

I enjoy

123.557

123.556678

int number = 10;

char* result = (number % 2 == 0)? "even": "odd";

4

3. Write the difference between formatted I/O and unformatted I/O functions in C-

programming. Write the syntax for the following functions.

(i) getche()

(ii) getchar()

(iii)scanf()

Answer: The difference between formatted I/O and unformatted I/O are:

S.N. Formatted I/O Unformatted I/O

1. Formatted I/O uses human-readable

representations for data, such as strings,

numbers, or formatted dates, making it

easier for users to understand and interpret

the data.

Unformatted I/O deals with binary

representations of data, which are machine-

readable and not directly human-readable.

2. Formatted output is commonly used for

displaying results on the console or

generating formatted reports.

Unformatted output is commonly used for

saving and loading data from binary files and

for data transmission between different

systems or platforms.

3. For example: printf(), scanf(), etc. For example: getc(), getch(), etc.

(i) getche()

Syntax:

 Var1 = getche(void);

(ii) getchar()

Syntax:

 Var2= getchar(void);

(iii) scanf()

Syntax:

 scanf(“%format1, %format2…”, argument1, argument2);

4. (a) What do you mean by iteration? Explain the operation of break and continue

statement with a suitable example.

Answer: Iteration refers to the process of repeatedly executing a sequence of statements or a block

of code until a specific condition is met or for a defined number of times.

In C, the break and continue statements are used to control the flow of loops (like for, while, and

do-while).

Break: The break statement is used to prematurely exit a loop. When encountered, it immediately

terminates the loop's execution, and the program continues with the next statement after the loop.

5

Continue: The continue statement is used to skip the current iteration of the loop and proceed to

the next iteration, effectively skipping the remaining statements inside the loop for that specific

iteration.

(b) Write a program to check whether a word is palindrome or not without using

library function.

Answer:

#include <stdio.h>

int main() {

 int i;

 for (i = 1; i <= 10; i++) {

 if (i == 6) {

 break;

 }

 printf("%d ", i);

 }

 return 0;

}

Output: 1 2 3 4 5

Example of break: Example of continue:

#include <stdio.h>

int main() {

 int i;

 for (i = 1; i <= 5; i++) {

 if (i == 3) {

 continue; // Skip the iteration

when i equals 3

 }

 printf("%d ", i);

 }

 return 0;

}

Output: 1 2 4 5

#include <stdio.h>

int isPalindrome(int num) {

 int originalNum = num;

 int reversedNum = 0;

 while (num > 0) {

 int remainder = num % 10;

 reversedNum = reversedNum * 10 + remainder;

 num /= 10;

 }

 return (originalNum == reversedNum);

}

int main() {

 int num;

 printf("Enter a number: ");

 scanf("%d", &num);

 if (isPalindrome(num)) {

 printf("%d is a palindrome.\n", num);

 } else {

 printf("%d is not a palindrome.\n", num);

 }

 return 0;

}

6

5. (a) What do you mean by function header? Explain the function parameters and its

types.

Answer: A function header is the first line of a function that includes its return type, name, and

parameters, defining the function's signature.

A function can take parameters which are just values you supply to the function so that the function

can do something utilizing those values. These parameters are just like variables except that the

values of these variables are defined when we call the function and are not assigned values within

the function itself. Types of function parameters are:

a) Formal Parameters: Formal parameters are the values referenced in the

parameter index of a subprogram.

b) Actual Parameters: The Actual parameters are the variables that are

transferred to the function when it is requested.

For example:

(b) Write a C program to calculate the sum of digits until the sum becomes a single digit

number using recursion.

Answer:

int sum(int a,int b)

{

 return(a+b);

}

void main()

{

 int sum(int,int);

 int x=5,y=6;

 total = sum(x,y);

}

When we call a function in main() or anywhere else in the program,

and the function we created needs parameters, we would pass

parameters to it while calling the function. In the example above, we

passed variables x and y to obtain the sum of x and y.

According to the example above, the formal parameters are a and b,

and the actual parameters are x and y.

#include<stdio.h>

void main()

{

 int n, i, j, r, sum =0, temp;

 printf("Enter a number:\t");

 scanf("%d",&n);

 temp = n;

 do{

 sum=0;

 while(n!=0){

 r = n%10;

 sum += r;

 n /= 10;

 }

 n = sum;

 }while(sum%10 == 0);

 printf("\n%d", sum);

}

7

6. (a) What is an array? Why is it necessary in C programming?

Answer: Array can be defined as a finite ordered set of homogeneous elements.

For example; int a[5] is the set finite set of integers and is defined as a[5].

Arrays are used when processing of large number of similar data is required. Some major reasons

for array to be important in C programming are:

a. Data Grouping: Arrays allow you to group similar data items together, making it

easier to manage and manipulate related values.

b. Efficient Access: Elements in an array are stored sequentially in memory, enabling

efficient sequential access and quick random access using index-based retrieval.

c. Algorithm Support: Arrays are essential for various algorithms like sorting and

searching, and they serve as a foundation for implementing more complex data

structures.

d. Memory Efficiency: Arrays provide efficient memory usage by storing data in

contiguous memory blocks, minimizing wastage and supporting predictable

memory layouts.

(b) Write a program to display following pattern.

Answer:

#include<stdio.h>

#include<string.h>

void main(){

 char str[]="HELLO";

 int i, j, l;

 l=strlen(str);

 for(i = 0; i < l; i++){

 for(j = 0; j <= i; j++){

 printf("%c",str[j]);

 }

 printf("\n");

 }

 for(i = 0; i < l; i++){

 for(j = 0; j < l-i; j++){

 printf("%c",str[j]);

 }

 printf("\n");

 }

}

8

7. (a) Is there any relation between an array and a pointer? If yes, then show the relation

between an array and a pointer using suitable example.

Answer: There is a close relationship between arrays and pointers in C programming. In fact, arrays

and pointers are somewhat interchangeable in certain contexts due to the way C handles array

variables. When you use the name of an array in an expression, it "decays" into a pointer to its first

element. This means that in many cases, an array's name can be treated like a pointer pointing to

the first element of the array.

For example;

8. What is a structure? Write a program to read a structure named “Faculty” having

StaffID, Name, Address, and ServiceYear as members. Where ServiceYear is another

structure having DurationYear as a member. Now display the details of those faculties

whose service duration is more than 10 and less than 30 years.

Answer: Structure can be defined as a new named data type, thus extending the number of available

data types. For example;

Here, student is a new data type that has name, roll, sec and marks as its members.

#include <stdio.h>

int main() {

 int numbers[3] = {10, 20, 30};

 int *ptr = numbers;

 printf("Value using array indexing: %d\n", numbers[1]); // Prints 20

 printf("Value using pointer: %d\n", ptr[1]); // Also prints 20

 return 0;

}

In this example, we have an array named numbers containing three integers. We create a

pointer ptr and assign it the address of the first element of the array. Then, we use both array

indexing (numbers[1]) and pointer indexing (ptr[1]) to access the second element of the array,

which has the value 20.

struct student

{

 char name[50];

 int roll;

 char sec;

 float marks;

} ;

9

9. (a) Why do we need file handling? Write different modes of file opening.

Answer: File handling is crucial in programming for tasks like storing data persistently, input and

output operations, data sharing between programs, creating backups, logging, debugging,

configuration management, and resource sharing.

In C programming, when you open a file using the fopen function, you specify a "mode" that

indicates how you intend to use the file. Here are the different modes of file opening:

(a) "r" (Read): Opens the file for reading. The file must exist; if it doesn't, the opening fails.

(b) "w" (Write): Opens the file for writing. If the file already exists, its contents are truncated

(erased). If the file doesn't exist, a new file is created.

#include <stdio.h>

void main(){

 struct ServiceYear{

 int DurationInYear;

 };

 struct Faculty{

 int StaffID;

 char Name[50];

 char Address[50];

 struct ServiceYear service;

 }f[5];

 int i;

 for(i = 0; i++; i<5){

 printf("Member-%d\n",i+1);

 printf("Staff ID\t");

 scanf("%d",&f[i].StaffID);

 printf("Staff Name\t");

 scanf("%s",f[i].Name);

 printf("Staff Address\t");

 scanf("%s",f[i].Address);

 printf("Staff service year\t");

 scanf("%d",&f[i].service.DurationInYear);

 }

 printf("\n\nFaculty Memeber who meet required criteria:\n");

 for(i = 0; i < 5; i++){

 if(f[i].service.DurationInYear> 10 && f[i].service.DurationInYear < 30){

 printf("Staff ID\t%d",f[i].StaffID);

 printf("Staff Name\t%s",f[i].Name);

 printf("Staff Address\t%s",f[i].Address);

 printf("Staff service year\t%d",f[i].service.DurationInYear);

 }

 }

}

10

(c) "a" (Append): Opens the file for writing, but the new data is added to the end of the file.

If the file doesn't exist, a new file is created.

(d) "r+" (Read and Write): Opens the file for both reading and writing. The file must exist.

(e) "w+" (Read and Write): Opens the file for both reading and writing. If the file exists, its

contents are truncated. If the file doesn't exist, a new file is created.

(f) "a+" (Append and Read): Opens the file for both reading and writing. New data can be

added to the end of the file. If the file doesn't exist, a new file is created.

(b) What is the purpose of fseek and write a program to write the name, roll no,

and age of five students into a disk file name “STUDENT.DAT”.

Answer: The `fseek` function in C is used to reposition the file position indicator within a file,

enabling random access and facilitating operations at specific byte offsets

#include <stdio.h>

void main()

{

 FILE *fp;

 int roll, age, i;

 char name[20];

 fp = fopen("STUDENT.dat", "w+");

 if (fp == NULL)

 {

 printf("Cannot open file");

 }

 for(i=0; i<5; i++)

 {

 printf("Student-%d\n",i+1);

 printf("Name:\t");

 scanf("%s", name);

 printf("Roll no.:\t");

 scanf("%d", &roll);

 printf("Age:\t");

 scanf("%d", &age);

 fprintf(fp, "%s\t%d\t%d\n", name, roll, age);

 }

 fclose(fp);

}

11

10. Describe X format and T format in FORTRAN. Differentiate between unconditional

goto and completed goto in FORTRAN. Write a program in FORTRAN to sort

elements of a ID array in ascending ass well as descending order.

Answer: In FORTRAN, "X format" adds spacing or characters in formatted input/output to control

alignment, while "T format" sets tab positions for subsequent output fields, helping achieve proper

data layout and alignment in I/O operations.

In FORTRAN, an "unconditional goto" directly transfers control to a labeled statement without

conditions, while a "computed goto" dynamically selects a target label based on an expression's

value. Both can make code less structured and harder to read, encouraging the use of more

organized control structures instead.

 WRITE(*, *) "Descending order:"

 DO i = 1, N

 WRITE(*, *) ID(i)

 END DO

END PROGRAM ArraySort

PROGRAM ArraySort

 IMPLICIT NONE

 INTEGER, PARAMETER :: N = 10

 INTEGER :: ID(N)

 INTEGER :: Temp

 INTEGER :: i, j

 ! Input

 WRITE(*, *) "Enter", N, "integer elements:"

 DO i = 1, N

 READ(*, *) ID(i)

 END DO

 ! Ascending order

 DO i = 1, N - 1

 DO j = 1, N - i

 IF (ID(j) > ID(j + 1)) THEN

 Temp = ID(j)

 ID(j) = ID(j + 1)

 ID(j + 1) = Temp

 END IF

 END DO

 END DO

 WRITE(*, *) "Ascending order:"

 DO i = 1, N

 WRITE(*, *) ID(i)

 END DO

 ! Descending order

 DO i = 1, N - 1

 DO j = 1, N - i

 IF (ID(j) < ID(j + 1)) THEN

 Temp = ID(j)

 ID(j) = ID(j + 1)

 ID(j + 1) = Temp

 END IF

 END DO

 END DO

